
Computational Logic and 
Human Thinking 
 

  
Robert Kowalski 
Imperial College London 
 
based on Computational Logic and 
Human Thinking – How to be Artificially Intelligent 
Cambridge University Press (June 2011) 
 
Download at http://www.doc.ic.ac.uk/~rak/ 
 
 
 
 
 
 
 

http://www.doc.ic.ac.uk/~rak/


2 



Overview – Kyoto 2012 

Lecture 1 Overview and  Chapter 1 (London Underground)     Oct 3  
Lecture 2 Chapter A1  The Syntax of Logical Form      Oct 10 
Lecture 3 Chapter 2  The Psychology of Logic      Oct 17  
Lecture 4 Chapters A2 Truth and A3 Forward and Backward Reasoning Oct 24  
Lecture 5 Chapter 4  Search          Oct 24  
Lecture 6 Chapter 5  Negation as Failure       Oct 31 
Lecture 7 Chapter 6  How to Become a British Citizen    Nov 7 
Lecture 8 Chapter 7  The Louse and the Mars Explorer     Nov 14 
Lecture 9 Chapter 8  Maintenance Goals as the Driving Force of Life  Nov 14  
Lecture 10  Chapter A5 The Resolution Rule       Nov 21  
Lecture 11 Chapter 10 Abduction          Nov 28 
Lecture 12 Chapter 11 The Prisoner's Dilemma      Dec 5  
Lecture 13 Chapter A4 Minimal Models and Negation     Dec 5  
Lecture 14 Conclusions           Dec 12  
 



 
 
AI tools and techniques  
 
 • can be reconciled and combined  

• Logic 

• Procedural representations 

• Heuristics 

• Production Systems 

• Bayesian networks 

• Connectionism 
 

•     can help people 

• make better decisions 

• communicate more effectively with humans and machines. 

 
 
 

4 



    
     

   

Decision theory 
Production 
rules 

Clausal form 
of FOL 

Minimal model semantics 

Connectionist associations 

 AI tools and techniques can be reconciled and combined  

Goals  

Heuristics 

Procedures 

Beliefs 

5 



    
     

   
Goal: if there is an emergency  
  then I deal with it myself  
    or I get help or I escape. 

Observe 

Act 

The World 

 An Agent on the London Underground  

there is an emergency  
if there is a fire. 
 

I get help if there is an emergency  
   and I am on a train  
        and I alert the driver of the train. 
 

I am on a train. 
 

I alert the driver of the train  
if I press the alarm button. 
 

Beliefs: 

Decide 

6 



Complex thinking and decision-making can be compiled 
into more efficient, lower-level maintenance goals, 
heuristics (or input-output associations) 

For example: 
  
if there is a fire 
and I am on a train 
and I can not deal with the fire myself  
then I press the alarm button. 

  
 
 
 

7 



  
 
As Kahneman and Frederick (2002) put it: 
 

the intuitive, subconscious level “quickly proposes 
intuitive answers to judgement problems as they arise”,  
 
while the deliberative, conscious level “monitors the 
quality of these proposals, which it may endorse, correct, 
or override”. 

 
 
 

8 

Cognitive Psychology  
The dual process models of human thinking: 
Lower-level heuristics and  
higher-level thinking and deciding  
can be combined. 
 



    
     

Forward  
reasoning 

Forward  
reasoning 
 

   

Backward  
Reasoning 

Consequences 
Judge 
probabilities  
and utilities 

Decide 

Maintenance  

goal 

Achievement  

goal 

Observe Act 

The World 

Heuristic associations 

Computational Logic (CL) Agent: 
operational semantics  

Candidate 
actions 

9 



   Goal: if there is an emergency  
  then I deal with it myself  
    or I get help or I escape. 

A Connectionist implementation of CL 

there is an emergency  
if there is a fire. 
 

I get help if there is an emergency  
   and I am on a train  
        and I alert the driver of the train. 
 

I am on a train. 
 

I alert the driver of the train  
if I press the alarm button. 
 

Beliefs: 

10 



 
BDI agents in AI (Beliefs Desires Intensions) 
can be understood in CL agent terms 
  

Agents use their beliefs to attain their desires by generating 
intentions, which are selected plans of actions. (Selection of 
actions/plans is the subject of decision theory/analysis) 
 
In CL agents, beliefs and desires (or goals) are both represented in 
simplified logical form.  
 
Beliefs are represented as logic programs. 
Goals are represented in first-order logic (FOL).  
 



Goals and Beliefs 

Goals  (in FOL) 
 
if there is an emergency  
then I deal with it myself or I get help or I escape. 
 
Beliefs (as a logic program) 
 
I get help if there is an emergency and I am on a train  
and I alert the driver of the train. 
 
there is an emergency if there is a fire. 
 
I alert the driver of the train if I press the alarm button. 
 
I am on a train. 



CL as the Language of Thought (LOT) 

 
In the philosophy of language, there are three schools of thought :  

 
The LOT is a private, language-like representation,  
which is independent of public, natural language.  
 
The LOT is a form of public, natural language.  
The natural languages that we speak  
influence the way we think.  
 
The LOT does not exist. 
 

In CL agents, computational logic serves as an agent’s private LOT, 
 independent of any public natural language.  

 
 

 
13 



CL as the LOT 
 
According to relevance theory [Sperber and Wilson, 1986],  
people understand natural language by attempting  
to extract the most information for the least processing cost. 
 
It follows that: 
 
If you want to identify the LOT, 
then you should study communications  
that are easy to understand. 
 
If you want your communications to be easy to understand,  
then you should express them in a form  
that is close to the thoughts that you want to convey.   
 
 
 

14 



Computational logic and natural language: 
The Emergency Notice on the London underground 

  

Press the alarm signal button to alert the driver. 

   

The driver will stop  

if any part of the train is in a station. 

  

If not, the train will continue to the next station, 

where help can more easily be given. 

  

There is a 50 pound penalty for improper use. 

 

 
15 



The Logic of the London Underground Notice 

The first sentence  
 

  Press the alarm signal button to alert the driver. 
 

is a procedural representation of a logic program:  
 

 the driver is alerted 
 if you press the alarm signal button. 

 
In general, a procedure of the form: 
 

  Do plan to achieve goal 
 

can be represented in the logic programming form: 
 

  goal if plan. 
 
 
  

 
 

16 



The Logic of the London Underground Notice 

 
  

The second sentence 
 

The driver will stop  

if any part of the train is in a station. 

 
is ambiguous, and one of its conditions has been omitted: 
 

the driver will stop the train in a station  
if the driver is alerted  
and any part of the train is in the station. 
 

 

17 



The Logic of the London Underground Notice 
 

The logic of the third sentence 
 

If not, the train will continue to the next station, 

where help can more easily be given. 

 
 is two sentences, say: 
 
  the driver will stop the train in the next station  
  if the driver is alerted  
  and not any part of the train is in a station. 

  

help can more easily be given in an emergency 
if the train is in a station. 
 

 
18 



The Logic of the London Underground Notice 

 
 

The fourth sentence 
  

There is a 50 pound penalty for improper use. 

 

 is also a conditional, but in disguise: 
 
  You may be liable to a £50 penalty 
  if you use the alarm signal button improperly. 
 

19 



The syntax of goals and beliefs 

Beliefs:     Logic programming clauses have the form: 
 
 
conclusion if condition1 and condition2   ….  and conditionn 
 
 
   If n = 0, then the clause is a “fact” 
 
 
 



The syntax of goals and beliefs 

Goals:  clauses of the form:  
 
  If condition1 and condition2   ….  and conditionn  
 then conclusion1 or conclusion2   ….  or conclusionm 

 
 
If m = 0, then the goal is equivalent to a denial  
(or constraint): 
 
  it is not the case that 
  condition1 and condition2   ….  and conditionn  



CL agents - operational semantics 
 

Reason forwards from observations and  forwards and backwards from beliefs,  
to determine whether some instance  of the conditions of a goal 
 
If condition1 and condition2   ….  and conditionn  
then conclusion1  or conclusion2   ….  or conclusionm 
 
 is true. Goals understood in this way are called maintenance goals. 
 
Derive the corresponding instance of the conclusion of the goal 
 
conclusion1  or conclusion2   ….  or conclusionm 
 
 as an achievement goal, to make true.  
 
Reason backwards from achievement goals, reducing goals to 
subgoals, 
searching for a plan of actions that solves the goals. 



CL agents - model-theoretic semantics 
 

Beliefs describe the world as the agent sees it. 
Goals describe the world as the agent would like it to be.  
 
In deductive databases:  
Beliefs represent data.  
Goals represent queries and integrity constraints. 
 
Given beliefs B, goals G and observations O, 
The purpose of an agent’s life is to generate a set   
of actions and assumptions about the world such that: 
  
 G  O is true in the model of the world determined by 
 B  .  
  
 



Abduction 

Classical abduction is the task of generating assumptions  
to explain observations O.  
 
For example, if instead of observing fire,  
I observe  there is smoke, and  
I believe  there is smoke if there is a fire. 
  
Backwards reasoning from the observation generates an 
assumption there is a fire.  
 
Forward and backward reasoning then continue as before, to 
generate a plan of actions to deal with the emergency. 
 



Abductive logic programming (ALP) 
combines abduction and CL agents 
 

There can be several, alternative  that, together with B,  
make G and O both true.  
 
The challenge is to find the best  
within the computational resources available. 
  
In classical decision theory, the value of an action is measured by  
the expected utility of its consequences. 
  
In philosophy of science, the value of an explanation is measured 
similarly in terms of its probability and explanatory power.  
(The more observations explained the better.) 
  
In ALP/CL agents, the same measure can be used to evaluate both 
candidate actions and candidate explanations.  
 
In both cases, candidate assumptions in  are evaluated by using 
forward reasoning to generate consequences of the assumptions in . 



 
Reasoning with uncertainty 
ALP/CL is compatible with probability 
 
 The general pattern of cause and effect:    

  
 a particular outcome happens  
 if I do a certain action  
 and the world is in a particular state. 
 
               uncertain 
 
David Poole [Journal of Artificial Intelligence, 1997] has shown 
that associating probabilities with assumptions gives ALP the 
expressive power of Bayesian networks. 
 
 



Uncertainty 

For example: 
  
  You will be rich if you buy a lottery ticket  
  and your number is chosen. 
 
  It will rain if you do a rain dance 
  and the gods are pleased. 
   
You can control your own actions  
(like buying a ticket or doing a rain dance). 
  
But you cannot always control the state of the world  
(your number is chosen or the gods are pleased).  
 
You might be to judge its probability (one in a million?).   
 



Classical decision theory makes unrealistic simplifying 
assumptions 

Uncertainty is one of the complications contributing the problem 
of deciding what to do.  
 
To reduce this complexity, classical decision theory makes the  
simplifying assumption that all of the alternatives to be decided 
between are given in advance. 
 
For example, if you are looking for a new job, classical decision 
theory  would assume that all of the job options are given, and it 
would focus on the problem of deciding which option is most 
likely to give the best outcome. 
 



Smart choices – a better decision theory 

But as [Keeney, 1992; Hammond et al., 1999; Carlson et al., 2008]] 
and other decision analysts point out,  
 
the assumption that all alternatives are given in advance is not 
only unrealistic as a descriptive model of human decision making, 
but it is also unhelpful as a normative model. 
 
To make a good decision between alternatives, it is necessary first 
to establish the goals (or problem) that motivate the alternatives. 
These goals might be generated explicitly by higher-level thinking 
or they might be hidden implicitly in lower-level heuristic rules.  
 



Smart choices involve  
creative generation of alternatives 

For example, you might receive an offer of a new job when you 
are not looking for one, and you may be tempted to limit your 
options simply to deciding between accepting or rejecting the 
offer.  
 
If you step back from the temptation, and think about the broader 
context of your goals, then you might generate other alternatives, 
like perhaps using the job offer to negotiate an improvement in 
the conditions of your current employment. 
 



Conclusions 
 
ALP/CL agent model arguably 
   

reconciles and combines FOL, production systems, decision 
theory, connectionism, and probability. 
 
can be used by ordinary people  
to improve their own human intelligence.  
 
can help people communicate more effectively with 
humans and machines. 
 
can help people make smarter choices.  

 



Homework - 

One page English essay of about 500-600 words, giving: 
 
Your background, as relevant to this course. For example, have you had a 
course in logic before? Prolog? Your mathematical background? Etc. 
 
Your intellectual and professional plans for the future. Do you have 
alternative plans? Do the outcomes of the alternatives depend on 
outside influences outside your control? Do the alternatives have 
different utilities or probabilities? 
 
How do you think this course might be useful to you? 
 
Try to express yourself as logically as you can. 
Do not worry too much about grammar, but do the best you can. 



Computational Logic and Human Thinking 
Lecture 2 – The syntax of logical form – Chapter A1 
 

Chapter A1 
 
Some examples (not in the book): 
 
 Complex events and complex actions 
 
 Simple conversation 
 
 Blocks world 
 
 Dining philosophers 
 
 
 
 



Atomic formulas (or atoms) are 
 the basic building blocks of symbolic logic 

  
Atoms in logic are collections of terms, like “train”, “ driver” and 
“station”, held together by predicate symbols, like “in” or “stop”.  
 
Predicate symbols are like verbs in English, and  
terms are like nouns or noun phrases. 
  
     the driver stops the train 
  
 predicate symbol   arguments 
     
 
     stop(driver, train) 
 
      constant terms 
 



Alternative representations are possible 

 Propositional logic (atoms have no internal structure) 
A predicate symbol with zero arguments (0-order logic) 
 
   happens-stop-driver-train       
  
 
Meta-logic or higher-order logic   
(predicates or predicate symbols are arguments of higher-level predicates) 
 
   happens(stop, driver, train) 
 
 
Meta-logic or higher-order logic with reification 
(events and other first-order objects are made into constants) 
  
   happens(event-0014) 
   type(event-0014, stop) 
   agent(event-0014, 007) 
   object(event-0014, the-flying-scotsman) 
   isa(007, train-driver) 
   isa(the-flying-scotsman, train) 
 



Terms “denote” (or represent) individuals 

Constants like:    007 
 
Variables, which stand for whole classes of individuals, like: X + Y = Y + X 
  
Variables start with an upper case letter, like X or Y. 
Constants , function symbols and predicate symbols start with a lower case letter. 
The opposite convention is also common. i.e. x + y = y + x. 
 
Complex terms can be constructed using function symbols: 
 
mother of X written   mother(X) 
2 + 3   written   +(2, 3) 
 
However, functions can be written as relations, For example: 
  
  mother(cain) = eve  can be written  mother(cain, eve) 
 
  +(2, 3) = 5    can be written  +(2, 3, 5) 
 



Function symbols make it possible to name an infinite 
number of individuals with a finite vocabulary. 

The natural numbers 0, 1, 2, … can be represented by 
 
0, s(0), s(s(0)),….  
 
The function symbol s is called the successor  function.  
 
The term s(X) represents  X+1.  
 
2 + 3 = 5 can be represented by +(s(s(0)), s(s(s(0))), s(s(s(s(s(0))))) ) 
  
 
Terms that contain no variables are called ground terms.  
 
  
 



Conditionals and logic programs 

  
A conditional is a sentence of the form A → B, where A and B are sentences.  
However, we use the expression conditional to refer to sentences that may contain variables.  
 
Logic programs are a special case of sets of conditionals (also called clauses): 
  
   C1  …   Cn   ¬D1   …  ¬ Dm → E  
  
equivalently E ← C1  …   Cn   ¬D1   …  ¬ Dm  
  
where the conclusion E is an atomic formula,  
the conditions Ci are atomic formulas, and  
the conditions ¬ Dj are the negations of atomic formulas.  
 
n and m can be 0.  
If m is 0, then the conditional is called a definite clause. 
  
If n+m is 0, then E← (or →E) is is normally written simply as E.  
 
Expressions connected by   are called conjunctions. 
Expressions connected by   are called disjunctions. 
 
 



Variables and quantifiers 

Predicate symbols and constant symbols link clauses together. 
 Variables link parts of the same clause together.  
 
 amazing(X) ←  can-fly(X)  
 i.e.   X (amazing(X) ←  can-fly(X))  
 anything that can fly is amazing.  
  
 amazing(X) ←  can-fly(Y)  
 i.e  X Y (amazing(X) ←  can-fly(Y))  
 if something can fly then everything is amazing! 
 
Variables are universally quantified within the scope of the clause in which they appear.  
 
 Because all variables appearing in clauses are universally quantified  
and their scope is the entire clause,  
quantifiers  can be omitted.  
 
Because conditionals can have no conditions,  
atomic sentences can also contain universally quantified variables.  
  
   likes(bob, X) 
 
Atomic sentences that do not contain such variables are also called facts. 
 



Sorts, types and objects 

In unsorted logic   amazing(X) ←  can-fly(X)  
implies     if a rock can fly then the rock is amazing.  
 
     X + Y = Y + X  
implies     if you add two rocks together in any order,  
     then the result is the same. 
  
In sorted or typed logics, variables are assigned sorts or types.  
In unsorted logic, an extra condition can be added to express the sort of a variable. 
  
For example:   amazing(X) ← can-fly(X)  animal(X)  
     animal(X) ←  person(X)  
  
In object-oriented computing, the person class inherits flying from the animal class. 
 
In natural languages, unsorted variables are expressed by words like anything and everything 
and sorted variables by common nouns, like an animal, a station, or a bird.  
 
Instead of:  X (amazing(X) ← can-fly(X)  animal(X)) 
 
or    amazing(X) ← can-fly(X)  isa(X, animal) 
    isa(X, animal) ← isa(X, person 
 
we write:   if an animal can fly then the animal is amazing 
or    any animal that can fly is amazing 



Recursive definitions 

  
Conditionals can be used to define recursive predicates. The ability to express 
recursion makes logic programming a general-purpose programming language. 
  
  natural-number(0) 
  natural-number(s(X)) ← natural-number(X) 
  
  +(0, Y, Y) 
  +(s(X), Y, s(Z)) ← +(X, Y, Z)  
 
Notice the treatment and lack of treatment of sorts.   
 
In functional notation, the definition is simpler : 
  
  0 + Y = Y 
  s(X) + Y = s(X + Y)   
  
or  (X + 1) + Y = (X + Y) + 1  
 
 



Goal clauses 
 An achievement goal is represented by a goal clause,  
which is an existentially quantified conjunction of atoms and negations of atoms: 
   

  X1 … Xm (C1  …   Cn   ¬D1   …  ¬ Dm) 
  
If m is 0, then the goal clause is called a definite goal clause. 
 
Because all variables in goal clauses are existentially quantified 
it is normal to omit the quantifiers. For example: 
  
      likes(bob, X)  
stands for      X likes(bob, X)  
  
Definite clauses and definite goal clauses are also called Horn clauses after the 
logician Alfred Horn. Horn clauses are equivalent to Turing Machines, which are the 
standard mathematical model of mechanical computation. 
 
In logic programming, goal clauses represent the computation to be performed: 
  
    +(s(s(0)), s(s(0)), X )  +(X, Y, s(s(s(s(s(0))))) )  
  
represents the problem of solving the equations 2+2 = X and X+Y =5. 
 



Ambiguity = when an expression can be translated into 
precise language in more than one way 

X + Y = Y + X 
X + 1 = 2 
 
likes(bob, X) 

 
Ambiguity  vagueness 
 
Vagueness = when an expression does not have a precise meaning 

 
strong(superman) 
big(12334) 
small(3) 

 
 
 



Logical equivalences 

  
     X Y (amazing(X) ←  can-fly(Y)) 
is equivalent to:  X (amazing(X) ←  Y can-fly(Y)) 
  
      amazing(X)  ← can-fly(X) 
      amazing(X)  ← movie-star(X) 
are equivalent to:   amazing(X)  ← (can-fly(X)   movie-star(X)) 
  
      generous-to(X, Z) ←  likes(X, Y)  gives(X, Y, Z) 
is equivalent to:   (generous-to(X, Z) ← likes(X, Y)) ← gives(X, Y, Z) 
  
The symbol   is used for the logical connective or.  
Expressions connected by   are called disjunctions.  
In general, a disjunction has the form: 
  
      C1  …   Cn  
i.e.      C1 or … or  Cn  
 



Maintenance goals: 

 hungry(me) → X eat(me, X) 
        

 attacks(X, me) → runaway(me)  attacks(me, X) 
  
Existential quantifiers in the conclusions of conditional goals are so common, that it is 
convenient to omit them: 
 
Variables in the conclusion of a conditional goal  
that are not in the conditions are existentially quantified,  
with scope the conclusion of the goal.  
 
For example: 
  
Maintenance goal:  hungry(me) → eat(me, X) 
  
The inclusion of disjunctions in the conclusions of conditionals gives the logic of conditionals 
the power of classical logic. 
 
Tip:  Existential quantifiers are generalised disjunctions. 
Universally quantifiers are generalised conjunctions. 



Negation 
  
In classical logic, negative and positive sentences have the same status. 
But in Computational Logic, positive sentences are more basic than negative sentences.  
 
Conditionals normally have only positive conclusions,  
but may have negative conditions ¬ C (also written not C). 
  
    liable-to-penalty(X) ← press-alarm(X)  not emergency 
    can-fly(X) ← bird(X)  not penguin(X) 
  
not C holds if C fails to hold. This is called negation as failure.  
 
If we are told bird(john), but have no reason to believe penguin(john),  
it follows by negation as failure that can-fly(john). 
 
Here is a definition of the odd and even numbers: 
  
      even(0) 
      even(s(s(X))) ← even(X) 
      odd(X) ← not even(X) 
  
Because it cannot be shown that even(s(0), it follows that odd(s(0)). 



Constraints = maintenance goals with conclusion false.  
 

For example, in the context of an agent monitoring its candidate actions, 
the constraint: 
  
      liable-to-penalty(X) → false 
i.e.      Do not be liable to a penalty. 
  
functions as a prohibition,  
which prevents actions that are liable to a penalty. 
like pressing the alarm signal button improperly or  
failing to pay taxes. 
  
Other constraints: 
  
      even(X)  odd(X) → false 
i.e.      Nothing is both odd and even 
  
 



Functions, relations and equality 

  
We use function symbols to construct composite terms.  
Other kinds of functions are treated as relations (or predicates), as in relational databases. 
Instead of f(X) = Y, where f is a function symbol, we write f(X, Y), where f is a predicate symbol.  
The fact that the relation is a function is represented by the constraint: 
  
      f(X, Y1)  f(X, Y2) → Y1 = Y2 
  
We combine this relational representation of functions with a simple notion of equality, 
understood as identity, and defined by 
  
      X = X 
  
This representation works well only if individuals have unique names.  
For example, it’s not good enough to say bob stops the train if same person is also called robert 
 and if more than one person is also called bob.  
We have to give bob a unique name, 007 for example, and say something like: 
  
     stops(007, the train) 
     first-name(007, bob) 
     first-name (007, robert) 
     first-name (008, bob) 
  
The definition of equality as identity, means that two individuals are identical if and only if they have the 
same unique name. This constrasts with the more conventional notion of equality, in which the same 
individual can have several names. For example: 
  
    the morning star = the evening star 
    doctor jekyll = mister hyde 
 



Classical Logic 
  
The syntax of classical logic is an extension of the syntax of the conditional logic in this course. 
Sentences can be constructed using arbitrary combinations of  , ,  , ¬, and  and . 
 
In conditional logic, all quantifiers can be omitted. But in classical logic, all quantifiers need to 
be explicit 
In conditional logic, there is only way to express that all birds can fly and John is a bird: 
  
    can-fly(X) ← bird(X) 
    bird(john) 
  
But in classical logic, the same sentences can be expressed in many logically equivalent ways, 
including: 
  
   ¬(X((¬can-fly(X)  bird(X))  ¬bird(john))) 
   ¬(X((¬can-fly(X)  ¬bird(john))   (bird(X)  ¬bird(john)))) 
  
To translate classical logic into conditional logic,  
it is necessary to use such equivalence-preserving rules of inference as: 
  
   replace ¬X ¬A  by  X A 
   replace ¬A  ¬B  by  ¬(A  B) 
   replace A  ¬B  by  A ← B. 
 
In conditional logic, existential quantifiers are avoided by giving everything that exists a name. 
Instead of X bird(X), we say bird(john) or bird(007).  
If you know that john is a bird, why conceal John’s identity by saying only that someone is a 
bird. 



The relationship among classical logic, clausal logic and 
Computational Logic 

 Any sentence of classical logic can be translated into a set of clauses of the form: 
  
  C1  …   Cn → D1  …   Dm  
  
where each condition Ci and conclusion Dj is an atomic formula, and all variables in the clause 
are implicitly universally quantified with scope the entire clause.  
 
If n is 0, then C1  …   Cn is equivalent to true.  
If m is 0, then D1  …   Dm is equivalent to false. 
 
Traditionally, such clauses are written in the logically equivalent form: 
  
  ¬C1  …   ¬Cn  D1  …   Dm  
  
Although classical logic can be translated into clausal form,  
the original sentence and its translation are not always logically equivalent.  
For example, the sentence X Y (mother(X, Y) ←  person(X)) can be translated into the 
clause mother(X, mom(X)) ←  person(X).  
The clause uses a function symbol, and is more informative than the original sentence.  
 



Composite events + rules + composite actions 

 A T1 T2 T [pre-sensor detects possible fire in area A at time T1 ∧ 
 smoke detector detects smoke in area A at time T2  ∧ 
 |T1 – T2 |   60 sec ∧ max(T1, T2, T) 
 
 T3 T3 ‘T4T5 [activate local fire suppression in area A at time T3  ∧  
 T <T3   T + 10 sec ∧ 
    fire in area A at time T4     ∧  T3 <T4   T3 + 30 sec ∧ 
  send security guard to area A at time T5   ∧ T4 <T5   T4 + 10 sec 
 
∨  call fire department to area A at time T3‘ ∧ T <T3‘   T +  120 sec]] 



Example – simplified conversation 
 Maintance goal: 

 T1 T2 [sentence(you, T1, T2)   T3 T4[ sentence (me, T3, T4)   T2 < T3 < T2 + 3 sec ]]   
 
Beliefs: 
adjective(Agent, T1, T2)   word(Agent, my, T1, T2)   
adjective(Agent, T1, T2)   word(Agent, your, T1, T2) 
  
noun(Agent, T1, T2)   word(Agent, name, T1, T2)  
verb(Agent, T1, T2)   word(Agent, is, T1, T2) 
noun(Agent, T1, T2)   word(Agent, bob, T1, T2)   
noun(Agent, T1, T2)   word(Agent, what, T1, T2) 
  
sentence(Agent, T1, T3) noun-phrase(Agent, T1, T2) 
  verb-phrase(Agent, T2, T3) 
noun-phrase(Agent, T1, T3)  adjective(Agent, T1, T2)  
  noun(Agent, T2, T3) 
noun-phrase(Agent, T1, T2)   noun(Agent, T1, T2) 
verb-phrase(Agent, T1, T3)   verb(Agent, T1, T2)  
  noun-phrase(Agent, T2, T3) 
verb-phrase(Agent, T1, T2)   verb(Agent, T1, T2)  
 
 
 
 
 



Example – simplified conversation 
 

Observations: 
word(you, what, 1, 2)  word(you, is, 2, 3)    
word(you, your, 3, 4)  word(you, name, 4, 5)  
 
Actions: 
word(me, my, 6, 7)   word(me, name, 7, 8)    
word(me, is, 8, 9)   word(me, bob, 9, 10)  
 
 
 
 
 
 
 
 
 



Blocks world 

Maintenance goal: 
  request(on(Block, Place), T1) make-on(Block, Place, T2, T3)  T1 < T2 
 
Facts: on(a, b, 0) 
  on(b, table, 0) 
 
 
Beliefs: clear(table, T) 
  clear(Block, T)   X on(X, Block, T) 
 
  make-on(Block, Place, T, T)   on(Block, Place, T) 
      make-on(Block, Place, T1, T3)   make-clear(Block, TB1, TB2)  
   make-clear(Place, TP1, TP2)   min(TB1, TP1, T1)  max(TB2, TP2, T2)  
   move(Block, Place, T3)  T2 < T3  
  
    make-clear(Place, T, T)  clear(Place, T)  
    make-clear(Place, T1, T3)  on(Block, Place, T1) 
     make-clear(Block, T1, T2) move(Block, table, T3)  T2 < T3 
 
 possible(move(Block, Place), T)  clear(Block, T)  clear(Place, T)  Block  Place 
 initiates(move(Block, Place), on(Block, Place), T)  
 terminates(move(Block, Place), on(Block, Support), T)  on(Block, Support,T) 
 
 



The Dining Philosophers 

There are five philosophers. 
To eat a philosopher needs two forks: 



The Dining Philosophers  

Facts about the initial state of the world  

at time 0:             
      available(fork0, 0) 
      available(fork1 , 0) 
      available(fork2 , 0) 
      available(fork3 , 0) 
      available(fork4 , 0) 
 
      adjacent(fork0,  philosopher(0),  fork1 , 0) 
      adjacent(fork1,  philosopher(1),  fork2 , 0) 
      adjacent(fork2,  philosopher(2),  fork3 , 0) 
      adjacent(fork3,  philosopher(3),  fork4 , 0) 
      adjacent(fork4,  philosopher(4),  fork0 , 0) 
 
 



The Dining Philosophers   

Maintenance goal: 
 
time-to-eat(philosopher(I), T1)  
 dine(philosopher(I), T2, T3)  T1  < T2 ≤ T1 + 24 hours 
 
Belief: 
 
dine(philosopher(I), T1, T5)  
 think(philosopher(I), T1, T2)  
 pickup-forks(philosopher(I, T2, T3)   
 eat(philosopher(I), T3, T4)  
 putdown-forks(philosopher(I), T4, T5) 
 
In addition we need to define when actions are possible and what they 
initiate and terminate. 
 
 
 



Homework 2 

1. Write a list of all the notation and terminology introduced in this lecture  
 (chapter A1) with a brief explanation. For example: 

  
atom = smallest sentence consisting of a  
predicate symbol and list of arguments. 
 
  = the symbol meaning “and”. 

 
etc. 

 
2. Let parent(X, Y), grandparent(X, Y), mother(X, Y), ancestor(X, Y), female(X) express that 

X is a parent of Y, X is a grandparent of Y, X is mother of Y, X is ancestor of Y and X is 
female, respectively. Write the recursive definitions of grandparent and ancestor. For 
example, here is the definition of mother: 
 

  mother(X, Y)  parent(X, Y)   female(X) 
 
3. Represent the following as a logic program: 

 
  Zero is even. 
  The successor an even number is odd. 
  The successor of an odd number is even. 
 
 
 
 



Homework 3 

From exercise 3, Chapter 1, Logic for 
Problem-Solving, on my homepage: 



Homework 3 
From exercise 7, Chapter 1, Logic for Problem-Solving, on my homepage. Note that 
I have changed the convention for naming constants, variables, predicate symbols 
and function symbols to the Prolog convention. In the last sentence, Dist(x, y, z) 
should be Distance(x, y, z). 



Computational Logic and Human Thinking 
Lecture 3 – The Psychology of Logic – Chapter 2 
 

The Wason selection task 
 
The Byrne Suppression example 
 
The Pollock red light example 



The Wason selection task (Peter Wason, 1968) 

 

 
d 

 
3 

 
7 

 
f 

The task is to select those and only those cards that need to be turned 
over,  to determine whether the following conditional holds: 
 

If there is a d on one side, 
then there is a 3 on the other side. 
 

Only about 10% of the subjects give the answer that is logically correct 
according to classical logic. 
 
Most psychologists conclude that logic has little relationship with 
human thinking. 

 



The Wason selection task (Peter Wason, 1968) 

 

 
d 

 
3 

 
7 

 
f 

 
If there is a d on one side, 
then there is a 3 on the other side. 

 
Most people correctly turn over the d card, 
To check there is a three on the other side.  
(modus ponens) 
 
Most people incorrectly turn over the 3 card, 
To check there is a d on the other side.  
( the fallacy of affirmation of the consequent) 
 
Most people incorrectly fail to turn over the 7 card, 
To check there is no d on the other side.   
(failure to perform  modus tollens) 
 



The drinking task 

If a person is drinking alcohol in a bar, 
then the person is at least eighteen years old. 
 
Most subjects give answers that are logically correct according to classical logic: 
 
If a person is drinking beer, they  correctly check that  
the person is at least eighteen years old. (modus ponens) 
 
If a person is obviously less than eighteen years old, they  correctly check  that 
the person is not drinking alcohol. (modus tollens) 
 
If a person is at least eighteen years old, they do not  incorrectly check  that 
the person is drinking alcohol. (affirmation of the consequent) 
 
The most popular explanation (Leda Cosmides, 1985, 1989) is that 
 humans have evolved a specialized algorithm for  
detecting cheaters in social contracts (in the field of evolutionary psychology): 
  
If you accept a benefit, 
then you must meet its requirement. 
 
Cheng and Holyoak (1985) argue that people reason using pragmatic reasoning schemes 
involving deontic notions of permission, obligation and prohibition. 
 



General-purpose versus special-purpose reasoning 

Both Cosmides and Cheng and Holyoak argue that people do not have an in-
built, general-purpose ability for abstract logical reasoning, but employ 
specialised algorithms for dealing with practical problems.  
 
An alternative explanation 
 
• Specialised algorithm     
 = specialised knowledge or beliefs 
 + general-purpose reasoning. 
 
• Natural language conditionals   
  logical conditionals in the LOT. 
 
• Reasoning with conditional beliefs  
  reasoning with conditional goals. 
 
• Reasoning with negation is problematic,  
 because “negative  observations” need to be derived from  
 positive observations. 
 
 
 



An alternative explanation of the selection task 

People treat goal conditionals and belief conditionals differently: 
  

• They treat beliefs as logic programming clauses: 
 

 All the conditionals with the same conclusion are the  
 only conditionals with that conclusion 
 (which justifies the “fallacy” of affirmation of the consequent).  
 
 Almost all reasoning is backwards or forwards 
 (which inhibits modus tollens). 
 
• They treat goals as sentences of FOL (first-order logic). 
 (which explains when they reason “correctly” with goals, 
 according to  classical logic). 
 



The conditional interpreted as a belief –  
modus tollens is hard 

Given the positive observation: 
  
 the fourth card has number 7 on the number side. 
  
To perform modus tollens with the belief: 
  
 if a card X has letter d on the letter side  
 then the card X has number 3 on the number side. 
  
it is necessary first to derive the negative conclusion:  
  
it is not the case that the fourth card has number 3 on the number side. 
  
But this derivation is hard to motivate. Why not also derive: 
  
 it is not the case that the fourth card has number 1 on the number side. 
 it is not the case that the fourth card has number 2 on the number side. 
 it is not the case that the fourth card has number 4 on the number side.  
 ….etc. 



The suppression task (Ruth Byrne 1989) 

  
Consider the following pair of premises: 
  
If she has an essay to write, then she will study late in the library. 
She has an essay to write. 
  
Most people correctly conclude: 
  
She will study late in the library. 
  
Suppose I now say in addition: 
  
If the library is open, then she will study late in the library. 
  
Given this additional information, many people (about 40%) suppress their 
earlier conclusion that she will study late in the library. 
 
Byrne concludes that people do not reason by means of rules of inference (like 
modus ponens), but by constructing mental models. 



An alternative explanation of the suppression task  

  
The natural language conditional: 
  
if the library is open, then she will study late in the library  
 
is an incorrect expression of its intended meaning: 
 
if the library is not open, she will not study late in the library. 
 
In general if A then B is not equivalent to if not A then not B. 
 
The intended meaning of the two sentences is as a rule and exception: 
 
if she has an essay to write, then she will study late in the library. 
but if the library is not open, then she will not study late in the library. 
 
But forward and backward reasoning can be viewed as determining truth in 
minimal models.  
(which partly justifies the claim about mental models) 
 
 



An alternative representation of the suppression task 
as a rule with possible exceptions 

  
The natural language conditional: 
  
If she has an essay to write, then she will study late in the library. 
 
has the underlying logical form: 
 
 she will study late in the library 
 if she has an essay to write 
 and it is not the case that  
 she is prevented from studying late in the library. 
      
 she is prevented from studying late in the library 
 if the library is not open. 
 
 she is prevented from studying late in the library 
  if she is unwell. 
 
 she is prevented from studying late in the library 
 if she has a more important meeting. 
      
 she is prevented from studying late in the library 
 if she is distracted. 



The use of conditionals to express cause and effect 
 (John Pollock 1995) 

Consider the following pair of premises: 
 
  an object is red if it looks red.   
 this apple looks red. 
  
Most people correctly conclude: 
  
 this apple is red.  
  
Suppose I now say in addition:  
   
 an object looks red if it is illuminated by a red light. 
  
It is likely that you will now withdraw your previous conclusion. 
 
 
Pollock concludes that people reason by means of sophisticated argumentation:   
The addition of the second sentence undermines the first argument. 
  
 
 



An alternative explanation of the looks red example 

 
The natural language conditional: 
  
 an object is red if it looks red. 
 
is an incorrect expression of its intended meaning: 
 
 an object looks red if it is red. 
 
In general if A then B is not equivalent to if B then A. 
 
The intended meaning of the two sentences is to express cause and effect: 
 
 an object looks red if it is red. 
 an object looks red if it is illuminated by a red light. 
 
The natural way to express  A causes B 
 
is:        B if A 
or equivalently     if A then B. 
 



An abductive interpretation of the looks red example 
 
Given:  an object looks red if it is red. 
   an object looks red if it is illuminated by a red light. 
   this object looks red. 
 
There are two alternative abductive explanations: 
 
 this object is red. 
 this object is illuminated by a red light. 
 
In general, given beliefs:  A if B1 

       A if B2 
       ...... 
       A if Bn 

and the observation    A 
 
abduction derives the alternative explanations :  B1 or B2 or... Bn. 



Conclusions 

People (including psychologists, philosophers and logicians) confuse: 
 
Natural language conditionals with conditionals in the language of thought. 
 
Goal conditionals with belief conditionals. 
 
A if B with not A if not B. 
A if B with B if A. 
 
Deduction with Abduction. 
 
Whether people are logical (a belief) with 
whether people should be logical (a goal). 
 
Whether people are logical when they reason consciously with 
whether people are logical when they think subconsciously. 
 

 



Computational Logic and Human Thinking 
Lecture 4 –– Chapter A2 Truth  
 

Interpretations and models of sentences 
 
The definition of the truth of a sentence in an interpretation 
 
The paradoxes of the semantics of conditionals 
 
Herbrand interpretations and minimal models 
 
Goedel’s incompleteness theorem 



Truth and consequences 

A sentence C is a logical consequence of a set of sentences S  
(or S logically implies C) if (and only if)  
C is true whenever S is true. 
  
A set of inference rules is sound (or truth-preserving)  
if (and only if) whenever it derives a sentence C from a set of 
sentences S, then C is a logical consequence of S. 
  
A set of inference rules is complete if (and only if)  
whenever a sentence C is a logical consequence of a set of 
sentences S, then there exists a derivation, by means of the 
inference rules, of C from S. 
 



The notion of truth applies only to well-formed 
formulas that are sentences 

A well-formed formula is an expression constructed from atomic 
formulas using the logical connectives, , ,  and ¬, and the 
quantifiers  and .  
 
A sentence is a well-formed formula all of whose variables are explicitly 
or implicitly quantified using  or . 
 
Truth is relative to an interpretation of the symbols of the language.  
 
An interpretation is a collection of individuals (called the domain of 
discourse), which are the denotations (or meanings) of the ground terms 
of the language, together with relations, which are the denotations of 
the predicate symbols.  
 
The relations in an interpretation determine the truth values of the 
atomic sentences of the language, and the truth values of the atomic 
sentences determine the truth values of all other sentences. 



For example 

If the constant john denotes my cat, the predicate symbols amazing and 
can-fly denote being lazy and sleeping all day respectively, then: 
  
   amazing(john) ← can-fly(john) 
  
means: 
  
   My cat is lazy if my cat sleeps all day. 
  
And because my cat sleeps all day and my cat is lazy,  
The atomic sentences can-fly(john) and amazing(john) are both true.  
 
As a consequence, amazing(john) ← can-fly(john) is also true. 
 



Truth in an interpretation 

An atomic sentence p(c1,…, cn) is true in an interpretation if (and only if)  
the individuals denoted by c1,…, cn are in the relation denoted by p.  
 
A conjunction C1  …   Cn is true in an interpretation if (and only if)  
all of Ci are true. (Therefore, if n = 0, then the conjunction is true.) 
 
A disjunction C1  …   Cn is true in an interpretation if (and only if)  
at least one of Ci is true. (Therefore, if n = 0, then the disjunction is not true.) 
 
A conditional C → D is true in an interpretation if (and only if)  
C is false or D is true.  
(Therefore C → false is true if and only if C  is false.) 
 
X C is true if (and only if) every ground instance of C (obtained by replacing every 
occurrence of the variable X in C by a ground term) is true.  
 
X C is true if (and only if) some ground instance of C is true.  
 
¬ C is true if and only if C is not true 
 
An interpretation is a model of S  
if (and only if) every sentence in S is true in the interpretation.  
 



The semantics of conditionals 

  
A conditional (also called material implication) of the form C → D is logically 
equivalent to a disjunction ¬ C   D.  
This implies that the conditional is true whenever D is true,  
no matter whether C is true or false.  
 
The conditional is also true whenever C is false,  
no matter whether D is true or false. For example, the conditionals: 
  
    john can fly →  2 + 2 = 4 
    the moon is made from green cheese → john can fly 
    
are both true in any interpretation in which 2 + 2 = 4 is true and the moon is 
made from green cheese is false,  
no matter whether john can fly is true or false. 
  
These properties of the semantics of conditionals are known as the paradoxes 
of material  implication. 
 
 



In defence of the semantics of conditionals 

  
    john can fly →  I am a monkey’s uncle 
  
Assuming the conditional is true and that I am an monkey’s uncle is false,  
it follows that john can fly is false.  
 
The paradoxes of conditionals can be avoided, partly by invoking pragmatic, 
rather than semantic, considerations, as argued for example by (Grice, 1989).  
 
For example, why assert the weak disjunction, even if it is true: 
  
    I am going to the party   I will stay at home 
  
if I have no intention of going to the party,  
but I am planning to stay at home instead?  
 



Universal quantifiers 

  
A sentence of the form X C is true if and only if every ground 
instance of C is true. This definition (called the substitution 
interpretation of quantifiers) works well  
only if there are enough ground terms in the language to name all 
the individuals in the interpretation.  
 
The set of ground terms needs to include not only the names of all 
the individuals in the sentences under consideration, but also 
additional names for any individuals that might need talking about 
in the future.  
 



Herbrand interpretations 

The definition of truth for arbitrary reduces to  
the definition of truth for ground atomic sentences. 
 
This means that for many purposes we can ignore what are the real individuals 
and the real relations denoted by a language, and focus instead on Herbrand 
interpretations or Herbrand models: 
 
A Herbrand interpretation is simply a set of ground atomic sentences, 
representing the set of all ground atomic sentences true in the interpretation. 
 
Theorem: If a set of sentences has a model, then it has a Herbrand model. 
 
 
Herbrand interpretations are named in honour of the logician Jacques 
Herbrand.  



Minimal models of definite clause programs  

  

In classical logic, a sentence C is a logical consequence of a set of sentences S  
if (and only if) C is true in every model of S.  
Typically, S has many, often infinitely many, models.  
 
However, in the case of definite clauses, there is a single model that stands out. 
It is the Herbrand model M that is generated by instantiating universally 
quantified variables with ground terms and by reasoning forwards.  
 
E:   even(0) 
   even(s(s(X))) ← even(X) 
 
Forward reasoning generates the infinite sequence of atomic sentences:  
  
   even(0), even(s(s(0))), even(s(s(s(s(0))))),….. 
 
  
This set is a Herbrand model of E.  
In fact, it is the smallest Herbrand model that makes E  true. 



Minimal models of definite clause programs  

The smallest model of a definite clause program H always exists, and it is 
called the minimal model of H. This model is minimal in the sense that it 
is contained in every other Herbrand model of H.  
 
 
Theorem: 
  
For every definite clause program H, there exists a unique minimal 
model M such that for all definite goal clauses G: 
  
  G is a logical consequence of H  
  (i.e. G is true in all models of H) 
 
  if and only if G is true in M.    
  
  
 



Truth in arithmetic  
 

  
The  standard model of arithmetic is the minimal model of a definite clause 
program.  
 
Here is a definite clause representation of addition and multiplication, along 
with a more conventional representation in terms of functions on the right: 
  
 +(0, Y, Y).       i.e.  0 + Y =Y.  
 +(s(X), Y, s(Z)) ← +(X, Y, Z).     i.e.  s(X) + Y = s(X + Y). 
  
 (0, Y, 0).       i.e.  0  Y =0. 
 (s(X), Y, V) ← (X, Y, U)   +(U, Y, V).  i.e.  s(X)  Y = (X  Y) + Y. 
 
These definite clauses have a unique minimal model, 
which is the standard model of arithmetic.  
 
The Incompleteness theorem of Kurt Goedel shows that there is no sound and 
complete set of axioms such that all sentences true in arithmetic are finitely 
provable from the axioms. 



Computational Logic and Human Thinking 
Lecture 4 –– Chapter A3 Forward and Backward Reasoning  
 

Forward Reasoning 
 
Backward Reasoning 
 
Backward reasoning for computation in logic programming 
 
Soundness and completeness 



As Sherlock Holmes explained to Dr. Watson,  
in A Study in Scarlet: 
 

 
“I have already explained to you that what is out of the common is usually a 
guide rather than a hindrance. In solving a problem of this sort, the grand thing 
is to be able to reason backward. That is a very useful accomplishment, and a 
very easy one, but people do not practise it much. In the everyday affairs of life 
it is more useful to reason forward, and so the other comes to be neglected. 
There are fifty who can reason synthetically for one who can reason 
analytically.” 
 “I confess,” said I, “that I do not quite follow you.” 
 “I hardly expected that you would. Let me see if I can make it clearer. Most 
people, if you describe a train of events to them, will tell you what the result 
would be. They can put those events together in their minds, and argue from 
them that something will come to pass. There are few people, however, who, if 
you told them a result, would be able to evolve from their own inner 
consciousness what the steps were which led up to that result. This power is 
what I mean when I talk of reasoning backward, or analytically.” 
 



Forward Reasoning for definite clauses 
 

Forward reasoning (modus ponens) is more fundamental than backward 
reasoning, because it is the way that minimal models are generated.  
 
Example:  buys-ticket(john, 150541) 
    buys-ticket(X, Y)  chosen(Y) → rich(X) 
     
Step 1:  Instantiate variables so the fact and one of the conditions of the 
conditional become identical: 
  
  
   buys-ticket(john, 150541)  chosen(150541) → rich(john) 
  
  
Step 2:  Forward reasoning derives the conclusion. This is classical 
modus ponens: 
  
   chosen(150541) → rich(john)  
 
 
 



Forward Reasoning with an atomic sentence containing 
universally quantified variables 

  
   likes(bob, X) 
   likes(X, Y)  gives(X, Y, Z) → generous-to(X, Z) 
  
Step 1:  Instantiate variables so the atomic sentence and one of the 
conditions of the conditional become identical: 
  
   likes(bob, X) 
   likes(bob, X)  gives(bob, X, Z) → generous-to(bob, Z) 
 
 
Step 2: Forward reasoning derives the conclusion: 
 
   gives(bob, X, Z) → generous-to(bob, Z) 
 
 



Forward Reasoning for definite clauses in general 

      atomic sentence 
      conditions → conclusion 
  
Step 1: Instantiate variables so the atomic sentence and one of the conditions of the 
conditional become identical: 
  
      atomic sentence’ 
      atomic sentence’  other-conditions’ → conclusion’. 
  
This should be the most general instantiation that makes the two atoms identical, and is 
called the (most general) unifier of the two atoms. All other common instances of the two 
atoms are instances of this most general unifier. The operation of most general instantiation is 
called unification; and the resulting atoms are said to be unified. The unifier of two atoms, if 
there is one, is unique up to the renaming of variables. 
   
Step 2: Delete condition that is now identical to the instantiated atomic sentence: 
 
     other-conditions’ → conclusion’. 
  
Note that atomic sentence’ can occur anywhere in the conditions of the conditional.  



Backward reasoning 

Initial goal clause: generous-to(X, mary) 
Conditional:   likes(X, Y)  gives(X, Y, Z) → generous-to(X, Z) 
  
Here the variable X in the goal clause is existentially quantified and different 
from the universally quantified variable X in the conditional, despite having the 
same (local) name.  
 
Step 1:   Instantiate variables so the atomic goal and one of the conclusion 
of the conditional become identical:  
  
    generous-to(X, mary) 
    likes(X, Y)  gives(X, Y, mary) → generous-to(X, mary) 
 
Step 2:  Replace the goal atom by the conditions of the conditional, as subgoals: 
  
Derived goal clause: likes(X, Y)  gives(X, Y, mary) 
  
Here the variables X and Y are existentially quantified. 
 



Backward reasoning in general 

Initial goal clause:   
        selected-goal  other-goals 
        conditions → conclusion 
  
Step 1: Unify the selected-goal with the conclusion of the conditional.  
Apply the unifier to both sentences: 
         
    selected-goal’  other-goals’ 
    conditions’ → selected-goal’ 
  
Step 2: Replace the instantiated selected goal by the conditions of the 
instantiated conditional: 
  
      conditions’  other-goals’. 
 



Backward reasoning for computation in logic 
programming. 

Program:     +(0, Y, Y).        
      +(s(X), Y, s(Z)) ← +(X, Y, Z) 
 
Initial goal clause: +(s(s(0)), s(s(0)), X)   
 
New goal clause:   +(s(0), s(s(0)), X’)  where  X = s(X’) 
New goal clause:   +(0, s(s(0)), X’’)   where X’ = s(X’’) 
New goal clause:   true     where X’’ = s(s(0)) 
  
i.e.      X = s(s(s(s(0)))). 
  
 



 
Both forward and backward reasoning are refutation complete 
for Horn clauses.  

  
 
If G is a definite goal clause and S is a definite clause program, 
then the following are equivalent: 
  
G is a logical consequence of S. 
G is true in the minimal model of S. 
There exists a derivation of false  
from the clauses S and G → false 
both by forward reasoning and by backward reasoning.  
 



Computational Logic and Human Thinking 
Lecture 5 –– Search 
 

The relationship between logic and search 
 
The relationship between backward reasoning and and-or trees 
 
The relationship between backward reasoning and or-trees 
 
Breadth-first versus depth-first versus best-first search 
 



Some common misunderstandings about the 
relationship between logic and search 

Paul Thagard (2005) in Mind: Introduction to Cognitive Science  states on 
page 45: “In logic-based systems, the fundamental operation of thinking 
is logical deduction, but from the perspective of rule-based systems, the 
fundamental operation of thinking is search.” 
 
Jonathan Baron (2008) in his textbook Thinking and Deciding writes on 
page 6: “Thinking about actions, beliefs and personal goals can all be 
described in terms of a common framework, which asserts that thinking 
consists of search and inference. We search for certain objects and then 
make inferences from and about the objects we have found.”  
 
On page 97, Baron states that formal logic is not a complete theory of 
thinking because it “covers only inference”. 
 



A logical representation of the story of the fox and crow 

 

 
Goal: The fox has cheese. 
 

Beliefs: The crow has cheese. 
 

An animal has an object 
if the animal is near the object 
and the animal picks up the object. 
 

The fox is near cheese if the crow sings.   
    

The crow sings if the fox praises the crow. 

? 



and-or trees represent the search space for backward 
reasoning 

 

An animal has an object if 

 

     

   I have the cheese. 

 

I am near the cheese if 

    

 

  The crow sings if 

   I praise the crow. 

 

 

  An animal has an object if 
  the animal makes the object. 

 

  The crow has  

  the cheese. 

 

 

possibly other beliefs 
 

 other beliefs 

 
the animal is 

near the object. 

     

 

the animal picks 

up the object. 

     

 

the crow sings. 

 

the crow has 

the cheese  

 

or 

and 

and 

or 



The search space for backward reasoning can also be 
represented as an or-tree 

 

   I make the cheese. 

 

possibly other beliefs 

 

 other beliefs 

 

   the crow has the cheese and the crow sings and I pick up the cheese. 

 
 

or 

or 

   the crow sings and I pick up the cheese. 

 

 

   I praise the crow and I pick up the cheese. 

 

 

   I am near the cheese and I pick up the cheese. 

 

 

   I have the cheese. 

 



Different strategies can be used for searching the 
search space 

Breadth-first searches level by level, first generating all nodes one step 
away from the top-level goal, then all nodes two steps away, etc.  
 
If there is any solution to the top-level goal, then breadth-first search is 
guaranteed to find the shortest solution. But breadth-first search is 
combinatorially explosive.  
 
If every node has two alternative successor nodes, one level lower in the 
tree, then if the shortest solution involves two goal-reductions, the 
search strategy needs to generate only 22 = 4 branches.  
 
If it involves 10 goal reductions, it needs to generate 210 = 1,024 
branches.  
 
But if it needs 50 goal-reductions, then it needs to generate 250 = 
1,125,899,906,842,624 branches.  
 



Depth-first search 

Under the same assumptions, if half of the branches contain a 
solution,  at the same level 50 steps away from the top-level goal, 
then, on the average, depth-first search needs to generate only 
100 nodes to find the first solution. 
 
Depth-first search is the opposite of breadth-first search, it 
explores only one branch at a time, backtracking to try other 
branches only when necessary. It is very efficient when the search 
space contains lots of solutions. But it can go disasterously wrong 
if it contains infinite branches and they are explored before 
alternative finite branches containing solutions.  
 



Depth-first search can go into an infinite loop when there are 
infinitely long branches in the search space 

Goal: Who will go to the party? 
Beliefs: bob will go to the party. 
  mary will go to the party if john will go to the party. 
  john will go to the party if mary will go to the party. 

 
  
 

 

   bob will go to the party. 

 

 

ad infinitum 

   john will go to the party. 

 

 

   Who will go to the party. 

 

Who = mary 

  john will go to the party. 

 

 

   mary will go to the party. 

 

 

Who = bob 

   mary will go to the party. 

 

 

Who = john 

  mary will go to the party. 

 

 

   john will go to the party. 

 
 

ad infinitum 



The programming language Prolog 

searches or-trees generated by backward reasoning depth-first.  
uses the order in which clauses are written  
for the order in which branches are searched.  
 
If the clauses are written in the order: 
  
  mary will go to the party if john will go to the party. 
  john will go to the party if mary will go to the party. 
  bob will go to the party. 
  
then Prolog goes into an infinite loop.  
 
But if the third sentence bob will go to the party is written first, then 
Prolog finds a solution in one step.  
 
This problem is solved in some implementations of Prolog – for example 
in XSB Prolog, which stores every subgoal in one place, and recognises 
and avoids going into most infinite loops. 
 
 



Best-first search 

 
Best-first search strategies are useful when different solutions of a 
problem have different values. 
  
For example, if you want to go from A to B, then you might prefer 
a travel plan that takes the least time, costs the least money or 
causes the least harm to the environment. No single plan is likely 
to be best for all of these attributes, so you may have to weigh 
and trade one attribute off against the other.  
 
Best-first search evaluates partial solutions and explores partial 
solutions that have the best solution so far in preference to partial 
solutions that have worse solutions. 



Best-first search 

 
Best-first search strategies are useful when different solutions of a 
problem have different values. 
  
For example, if you want to go from A to B, then you might prefer 
a travel plan that takes the least time, costs the least money or 
causes the least harm to the environment. No single plan is likely 
to be best for all of these attributes, so you may have to weigh 
and trade one attribute off against the other.  
 
Best-first search evaluates partial solutions and explores partial 
solutions that have the best solution so far in preference to partial 
solutions that have worse solutions. 



Homework 4 and 5  

1. Let S be the following set of clauses: 
  
 on(a, b)  
 on(b, c)    
 on(c, table)  
 on(d, table) 
 above(X, Y)  on(X, Y) 
 above(X, Z)  on(X, Y)  above(Y, Z) 
 
a. Use forward reasoning with S to generate the unique minimal 

model of S. 
b. Use backward reasoning with S to generate all answers to the goal 

clause above(a, X) 
c. Demonstrate a Herbrand model of S that is not minimal. 



Homework 4 and 5 

2. From exercise 3, Chapter 3, page 73. Note the opposite convention for the 
names of variables, constants and predicate symbols. Note also that top-
down is another name for “backward reasoning” and bottom-up is another 
name for “forward reasoning”. Exercise (7) of Chapter 1 is last week’s 
homework. 

 
 
 
 



Computational Logic and Human Thinking 
Lecture 6 –– Negation as Failure 
 

• Observations are positive. 
 
• Two kinds of negation: 
 

  Constraints 
 

  Negation as failure 
 
• Closed world assumption and  
 selective closed world assumption 
 
• Rules and exceptions 



Two main sources of negative information 

 
1. We directly observe only positive facts, like:  
 
  This card is showing the number 7. 
 
 We derive negative facts from a positive fact and an constraint.  
 
  This card is not showing the number 3 
  because no card shows two different numbers at the same time. 
 
2. We directly observe positive facts, like:  

 
  There is a train at 10:07 
  There is a train at 11:07 
  There is a train at   H:07 if 5 < H < 24 
 
 We derive  negative facts from the failure to derive positive facts: 
 
  There is no train at 10:00 
  There  is no train at 24:00 
 



Other sources of goals and beliefs often do have an essentially 
negative character in the form of constraints. 

Goals and beliefs we have been born with. 
Goals and beliefs we have second-hand from  
the testimony, persuasion or coercion of other agents. 
  
  Nothing is both big and small. 
  No number is both odd and even. 
  No letter is both a vowel and a consonant. 
  Do not drink alcohol in a bar if you are under eighteen years old. 
  Do not harm a person who is not threatening any harm. 
  Do not steal. 
  Do not talk with your mouth full. 
   
Such constraints play an important role in monitoring and eliminating 
both candidate actions and candidate explanations of observations, as 
we will see later. 



Negative observations can be derived from positive 
observations, using constraints. 

 
 
Observation:   the grass is wet. 
Constraint:    if an object is wet  
      and the object is dry  
      then false. 
 
i.e.      it is not the case that  
      an object is wet and the object is dry. 
 
Forward reasoning:  it is not the case that the grass is dry. 
 



Beliefs obtained from experience have a positive bias 

Columbus discovered America in 1492. 
The last train to leave London for Pulborough is at 22:52 
 
It follows by negation as failure that 
 
Columbus did not discover America in 1493.  
Columbus did not discover America in 2012. 
 
The last train to leave London for Pulborough is not at 22:51.  
The last train to leave London for Pulborough is not at 22:53.  
 
 
 
 



Programs compute positive, rather than negative facts 

Program:      +(0, Y, Y).        
       +(s(X), Y, s(Z)) ← +(X, Y, Z) 
 
computes:     +(0, 0, 0) 
       +(0, s(0), s(0)) 
        +(s(0), 0, s(0)) 
       ....... 
No program computes:  +(0, s(0), 0) 
           +(s(0), s(0), s(0)) 
           +(s(0), 0, s(0)) 
           +(s(0), 0, pot-of-gold) 
       ....... 
 



Negation as failure and the closed world assumption 

To show that the negation  P of a positive sentence holds, 
show that the positive sentence P does not hold. 
 
The closed world assumption represented as a meta-belief:  
 
   For all sentences P,  
   P holds if P does not hold 
or   holds( P )   holds( P )  
 
This meta-belief is a meta-sentence, because it talks about sentences.  
holds is a meta-predicate. 
 



An note about meta-logic (or modal logic) 

Notice the difference between the meta-sentences: 
 
   believes(john,  X santa-clause(X)) 

 believes(john,  X santa-clause(X))  

  X believes(john, santa-clause(X)) 
 

The following  sentence is consistent: 
 
believes(john,  X santa-clause(X))    X believes(john, santa-clause(X)) 
 
The following  sentence is consistent: 
 
 believes(john,   X santa-clause(X))    believes(john,  X santa-clause(X)) 



Backward reasoning extended with negation as failure (naf) 

Backward reasoning uses the belief: 
 
  positive conclusion if positive conditions and negative conditions 
 
as a goal-reduction procedure: 
  
  to show or make the positive conclusion hold,  
  show or make the positive conditions hold and     
  show or make the negative conditions fail to hold. 
  
Beliefs:      mary will go if john will go. 
       john will go if bob will not go. 
 
Backwards reasoning:  
Goal , show:     mary will go 
  
Subgoal:      john will go.  
Subgoal:      bob will not go. 
  
        Naf:  bob will go. 
        Failure: no! 
 
Success:      yes! 



Negation as failure is a form of defeasible  
(= non-monotonic or default) reasoning 

Old beliefs:    mary will go if john will go. 
       john will go if bob will not go. 
New belief:    bob will go 
 
Same goal, show:   mary will go  
  
Subgoal:     john will go.  
Subgoal:     bob will not go. 
  
       Naf:  bob will go. 
       Success: yes! 
  
Failure:      no! 
  
The new information bob will go defeats the previous argument that 
mary will go.  
 



Negation as failure can need an infinite amount of resources 

Beliefs:   mary will go if john will go. 
    john will go if mary will go. 
  
Goal, show:   mary will go.  
Subgoal:    john will go.  
Subgoal:    mary will go. 
ad infinitum   …………….. 
  
Since it cannot be shown that mary will go, it follows from the closed world 
assumption that mary will not go. Similarly john will not go. As far as we know. 
  
In this cases, the infinite chain of reasoning can be detected finitely by noticing 
that the same subgoal reoccurs as a subgoal of itself.  
 
But in the general case, infinite failure cannot be detected by finite means.  
 



Selective closed world assumption 

 
Robert Moore (1985) gives the following example of a selective closed world 
assumption: 
  
“Consider my reason for believing that I do not have an older brother. It is surely not 
that one of my parents once casually remarked, “You know, you don’t have any 
older brothers”. Nor have I pieced it together by carefully sifting other evidence. I 
simply believe that if I did have an older brother I would surely know about it, and 
since I don’t know of any older brothers, I must not have any.” 
 
The general closed world assumption: 
 
For all sentences P  holds( P )   holds( P ) 
 
The elective closed world assumption: 
 
For selected sentences p  holds( p )   holds( p ) 
 
In Moore’s example, the selected sentence p is “I have an older brother”. 
 



Default reasoning without closed world assumptions 

Expressions of the form cannot be shown do not need to be restricted to expressing 
closed world or selective closed world assumptions: 
 
 bob is accused of robbing the bank.  
      
 a person is innocent of a crime 
  if the person is accused of the crime 
  and it cannot be shown that  
  the person committed the crime. 
  
   a person committed an act 
   if another person witnessed the person commit the act. 
 
If it cannot be shown that bob robbed the bank, 
then the following sentence is consistent: 
 
   bob robbed the bank, and bob is innocent of robbing the bank. 
      
 
 



Rules and exceptions 

  
In everyday language, we commonly express a rule without mentioning 
possible exceptions: 
  
    all birds fly. 
i.e.    an animal can fly if the animal is a bird. 
  
rather than:   an animal can fly if the animal is a bird 
    and the animal is not a penguin 
    and the animal is not unfledged 
    and the animal is not injured. 
  
We commonly correct ourselves with seemingly contradictory statements: 
  
    an animal cannot fly if the animal is a penguin 
    an animal cannot fly if the animal is unfledged 
    an animal cannot fly if the animal is injured. 
 



Rules and exceptions 

We commonly say: 
  
As a general rule: a conclusion holds if conditions hold. 
Exception:   the conclusion does not hold  
     if other conditions hold. 
  
What we really mean is:  
    a conclusion holds if conditions hold  
    and other conditions do not hold. 



The suppression task example expresses a rule and 
exception the wrong way around 

  
she will study late in the library if she has an essay to write. 
she will study late in the library if the library is open. 
  
should be expressed in the standard form of a rule and exception: 
 
she will study late in the library if she has an essay to write. 
she will not study late in the library if the library is not open. 
 
with the more precise intended meaning: 
 
she will study late in the library  
if she has an essay to write and  
she is not prevented from studying late in the library. 
 
she is prevented from studying late in the library  
if the library is not open. 
 
 
 



Missing conditions are sometimes used to avoid details 

Housing Benefit is a benefit for people on a low income to help them 
pay their rent. You may be able to get Housing Benefit if you are on 
other benefits, work part-time or work full-time on a low income.  
  
The word “may” indicates that there are other conditions that also need 
to be satisfied to get Housing Benefit.  
  
 a person gets help to pay rent if the person receives housing benefit. 
  
 a person receives housing benefit 
 if  the person is on other benefits  
  or the person works part-time  
  or the person works full-time on a low income 
 and it is not the case that  
   the person is ineligible to receive housing benefit. 
 
 



Hierarchies of rules and exceptions 

   
Rule 1:  All thieves should be punished. 
Rule 2:  Thieves who are minors should not be punished. 
Rule 3:  Any thief who is violent should be punished. 
 
The intended meaning: 
 
   a person should be punished 
    if the person is a thief and the person is not a minor. 
  
   a person should be punished 
    if the person is a thief and the person is a minor  
   and the person is violent. 
  
 
If these are the only conditions under which a person who is a thief should be punished,  
then it goes without saying that: 
 
   a person should not be punished if the person is a thief  
   and the person is a minor and the person is not violent 
 
 



A “higher-level” representation 

a person should be punished  
if the person is a thief  
and it is not the case that 
the person is an exception to the punishment rule. 
  
a person is an exception to the punishment rule 
if the person is a minor 
and it is not the case that  
the person is an exception to the exception to the punishment rule. 
  
a person is an exception to the exception to the punishment rule 
if the person is violent. 
 



Suppose bob is a thief, and that is all we know about him 

Goal/query:  bob should be punished  
 
Subgoals:  bob is a thief  and  
    it is not the case that  
    bob is an exception 
 
Subgoals:  it is not the case that 
    bob is an exception 
  
    Naf:   bob is an exception 
    Subgoals:  bob is a minor and  
       it is not the case that 
        bob is an exception to the exception  
    Failure:    no! 
  
Success:  yes! 
 



Suppose mary is a thief, and a minor,  
and that is all we know about her 

Goal/query: mary should be punished  
Subgoal:  mary is a thief and  
   it is not the case that mary is an exception 
Subgoal:  it is not the case that mary is an exception 
  
   Naf:   mary is an exception 
   Subgoal:  mary is a minor and it is not the case that 
     mary is an exception to the exception 
   Subgoal: it is not the case that 
     mary is an exception to the exception 
  
     Naf:    mary is an exception to the exception    
     Subgoal:    mary is violent  
     Failure:      no! 
  
   Success:  yes! 
  
Failure:  no! 



Homework 6  

1. Show by backward reasoning and negation as failure what happens 
to john, who is a thief, a minor, violent and extremely jealous. 
 

2. Show by backward reasoning and negation as failure that 
even(s(s(s(0))), where 
 

   even(0) 
   even(s(X))   even(X) 

 
3. Suppose p  p.   Does the goal   p succeed or fail? 
 
4.  Suppose p   p.  Does the goal   p succeed or fail? 
  
 



Lecture 7 Chapter 6   
How to Become a British Citizen 

Homework 3, 4, 5 solutions 
 
 The British Nationality Act 
 
The University of Michigan Lease Termination Clause 
 
The World Health and UNICEF  Annual Estimates of 
National Infant Immunisation Coverage 
 
 
 



Homework 4 and 5 

2. From exercise 3, Chapter 3, page 73. Note the opposite convention for the 
names of variables, constants and predicate symbols. Note also that top-
down is another name for “backward reasoning” and bottom-up is another 
name for “forward reasoning”. Exercise (7) of Chapter 1 is last week’s 
homework. 

 
 
 
 



Homework 4 and 5  

 

 
 
 

distance(a, b, 3)    distance(a, c, 2)   distance(b, d, 2)   distance(d, e, 4)   distance(e, m, 1)  
distance(X, Y, W)    distance(X, Z, U)  distance(Z, Y, V)  plus(U, V, W) 
 
Is the problem distance(X, X, W) solvable? 
 
No. But the attempt to solve the problem by backwards reasoning generates an infinitely 
large search space. 
 
It is easier to make the search by forward reasoning terminate,  
generating a finite Herbrand model in the process  
(ignoring the necessary instances of plus). 
 
{distance(a, b, 3),    distance(a, c, 2), distance(b, d, 2),   distance(d, e, 4),   distance(e, m, 1), 
 distance(a, d, 5), distance(a, e, 9), distance(a, m, 10), distance(b, e, 6),   distance(b, m, 7), 
 distance(d, m, 5)} 
  
 
 
 





British Nationality Act 
Acquisition at Birth 

English 

1.-(1) A person born in the 
United Kingdom after 
commencement shall be a 
British citizen  
if at the time of the birth his 
father or mother is  
(a)  a British citizen; or 
(b) settled in the United 
Kingdom. 
 

Logic Program 

X acquires british citizenship by 
subsection 1.1 at time T 
if  X is born in the uk at time T 
and T is after commencement 
and Y is father of X  or  
  Y is mother of X  
and Y is a british citizen at time T or              

Y is settled in the uk at time T 
 



British Nationality Act 
Deprivation of citizenship 
 

English 

40.-(2) The Secretary of State may by order 
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to the public  
good. 
  
40.-(4) The Secretary of State may not make 
an order under subsection (2) 
if he is satisfied that  
the order would make the person  
stateless. 

 

Rule and exception 

The Secretary of State may by order 
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to the public 
good. 
 
The Secretary of State may not deprive 
a person of a citizenship status  
if the Secretary of State is satisfied that 
the order would make the person 
stateless. 



British Nationality Act 
Deprivation of citizenship 
 

Rule and exception 

The Secretary of State may by order  
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to  
the public good. 
 
The Secretary of State may not deprive a 
person of a citizenship status  
if the Secretary of State is satisfied that the 
order would make the person stateless. 

 

Logic program combining the rule 
and exception into one rule 

The Secretary of State may by order 
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to  
the public good 
 
and the Secretary of State is not 
satisfied that the order would make 
the person stateless. 
 



The relationship between rules and exceptions 
and argumentation 
 

Rule and exception 

The Secretary of State may by order  
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to  
the public good. 
 
The Secretary of State may not deprive a 
person of a citizenship status  
if the Secretary of State is satisfied that the 
order would make the person stateless. 

 

Argumentation 

An argument based on 
 
The Secretary of State may by order 
deprive a person of a citizenship status  
if the Secretary of State is satisfied that 
deprivation is conducive to  
the public good. 
 
is attacked and defeated by  
an argument based on 
 
The Secretary of State may not deprive 
a person of a citizenship status  
if the Secretary of State is satisfied that 
the order would make the person 
stateless. 
. 
 



British Nationality Act - Acquisition by Abandonment 
– another case of rules and exceptions 

English 

1.-(2) A new-born infant who, 
after commencement, is found 
abandoned in the United Kingdom 
shall, unless the contrary is shown,  
be deemed for the purposes of 
subsection (1)- 
 
(a) to have been born in the 

United Kingdom after 
commencement; and 
 

(b) to have been born to a parent 
who at the time of the birth 
was a British citizen or settled 
in the United Kingdom. 

 

Logic Programming 

The conclusion of 1.1 holds for a person  
if the person is found newborn abandoned 
in the uk after commencement 
and it is not shown that 
the contrary of the conditions of 1.1 hold 
for the person. 

 



University of Michigan Lease Termination Clause – 
Ambiguous use of English language 

The University may terminate this lease when the Lessee, having made 
application and executed this lease in advance of enrolment, is not 
eligible to enrol or fails to enrol in the University or leaves the University 
at any time prior to the expiration of this lease, or for violation of any 
provisions of this lease, or for violation of any University regulations 
relative to residence or for health reasons, by providing the student with 
written notice of termination 30 days prior to the effective time of 
termination, 

unless life, limb or property would be jeopardised, the Lessee engages in 
the sale or purchase of controlled substances in violation of Federal, state, 
or local law, or the Lessee is no longer enrolled as a student, or the Lessee 
engages in the use of firearms, explosives, inflammable liquids, fireworks 
or other dangerous weapons within the building or turns in a false alarm 
in which case a maximum of 24 hours notice would be sufficient. 



University of Michigan Lease Termination Clause – 
In clear and logical English 

 The University may terminate this lease by providing the student with 
written notice of termination 30 days prior to the effective time of 
termination       

       if    the Lessee has made application and                                                  
   executed this lease in advance of enrolment and                           
    [the Lessee is not eligible to enrol  
   or   the Lessee fails to enrol in the University] 
   or  the Lessee leaves the University at any time                                          
   prior to the expiration of this lease  
  or  the Lessee violates any provisions of this lease  
  or   the Lessee violates University regulations regarding residence  
  or  there are health reasons 
 and it is not the case that the University may terminate this lease 
 with a maximum of 24 hours notice of termination. 



The University may terminate this lease with maximum 24 hours notice 
 if    life, limb or property would be jeopardised  
 or  the Lessee engages in the sale or purchase of controlled                
  substances in violation of Federal, state, or local law  
 or  the Lessee is no longer enrolled as a student  
 or the Lessee engages in the use of firearms, explosives,             
  inflammable liquids, fireworks or other dangerous weapons  
  within the building  
 or  the Lessee turns in a false alarm. 
 
 
 
Perhaps the condition  “it is not the case that   the University may terminate this 
lease with a maximum of 24 hours notice of termination” was not intended.  
 
Why would the University want to restrict itself? 



WUENIC – A Case Study in Rule-based Knowledge Representation 
and Reasoning (two papers on my webpage) 
 
Anthony Burton1*, Robert Kowalski2, Marta Gacic-Dobo1, Rouslan Karimov3, David Brown3 

  
  Informal rules        (until ~ 2009) 
 
  Attempt to formalise the rules   (from ~2007 - 2009) 
 
  Formal rules and Prolog implementation  (from ~ 2009) 
 
 
 

1 Department of Immunization, Vaccines and Biologicals,  

World Health Organization, Geneva, Switzerland 

2 Department of Computing, Imperial College London, London, United Kingdom 

3 Division of Policy and Practice, United Nations Children's Fund,  

New York, New York, United States of America  

143 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047806
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047806
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047806
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047806
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047806


Yearly Official Infant Immunization Coverage Estimates 
produced by WHO/UNICEF 

144 



145 

Relationship with Legal Reasoning 

 
No simple, independent way to assess the truth,  
in this case the real immunisation coverage. 
 
There is a need for a systematic way to make decisions,  
which are rigorous, transparent, consistent,  
but also flexible.  
 
 



146 

Conflicting sources of data 
BCG,DTP1,DTP3,Pol3, MCV, HepB3, Hib3, 1980-2006 by countries 

Reported data  

data points 54497   

(27 years, 194 countries) 

To UNICEF :17900 records 

To WHO: 19481 records 

Administrative coverage: 8313 records  

Official coverage estimates:8803 records 

 

 

Survey data 

Data points 13017  

From 132 countries 

cohort coverage 1980 to 2005 

DHS survey  (194) 

MICS survey (211) 

EPI cluster survey (147) 

Other surveys (185) 

 

 

Estimates:  

24539 data points from194 countries and 27 years 

 



147 

Nationally reported data =  
Numerator/Denominator 
 
Numerator  =  Number of children immunised  
Denominator  =  Target population of children 

 
Numerator problems: 
 
 Missing immunization data 
 Ad hoc adjustment for missing data 
 
Denominator problems: 
 
 Inaccurate population data for denominator 
 Private / NGO sector not included 

 
 



148 

Survey data measures percentage directly 
(no numerator/denominator problems) 

Problems with survey data: 
 
Survey design (e.g., sample size) 
 
Questionnaire design/length 
 
Recall bias (mothers don’t remember)  
 
Survey implementation 



The rules are represented as logic programs in Prolog 

the WUENIC estimate for the Country, Vaccine and Year is R 
if the nationally reported data for a Country, Vaccine and Year is R  
and there is no survey data S for the Country, Vaccine and Any-Year  
and there is no working group decision to assign an estimate W  
for the Country, Vaccine and Year  
 
the WUENIC estimate for the Country, Vaccine and Year is W 
if there is a working group decision to assign an estimate W  
for a Country, Vaccine and Year  
 
In Prolog: wuenic(Country, Vaccine, Year, R) :-  

reported(Country, Vaccine, Year, R),  
not(survey(Country, Vaccine, Any-Year, S)), 
not(wgd(Country, Vaccine, Year, W)). 
 
wuenic(Country, Vaccine, Year, W) :-  
wgd(Country, Vaccine, Year, W). 

 



The rules are represented as logic programs in Prolog 
 
the WUENIC estimate for the Country, Vaccine and Year is R 
if the nationally reported data for a Country, Vaccine and Year is R  
and there is survey data S for the Country, Vaccine and Year  
and the survey data S supports the reported data R 
and there is no working group decision to assign an estimate W  
for the Country, Vaccine and Year  
 
the WUENIC estimate for the Country, Vaccine and Year is S 
if the nationally reported data for a Country, Vaccine and Year is R  
and there is survey data S for the Country, Vaccine and Year  
and the survey data S does not  support the reported data R 
and there is no working group decision to assign an estimate W  
for the Country, Vaccine and Year  
 
the survey data S supports the reported data R 
if the absolute difference between S and R is D 
 and D ≤ 10% 
 
 



Prolog code for the estimate between anchor points (two 
years in which there is a survey), with extra arguments for 
producing explanations and grade of confidence 

wuenic(C,V,Y,'C:',Explanation,Coverage,GoC) :- 
 reported_time_series(C,V,Y,_,ReportedCoverage,GoCRpt), 
 between_anchor_points(C,V,Y,YrBefore,RuleBefore,_,YrAfter,RuleAfter,_), 
 not(both_anchors_resolved_to_reported(RuleBefore,RuleAfter)), 
 not(workingGroupDecision(C,V,Y,interpolate,_,_,_)), 
 calibrate(C,V,YrBefore,YrAfter,Y,Coverage),  
 concat_atom(['Reported data calibrated to ',YrBefore,' and ',YrAfter,' levels. ‘],Explanation), 
 
 goc_calibrated_point(C,V,Y,YrBefore,YrAfter,ReportedCoverage,Coverage,GoCRpt,GoC). 
 
 goc_calibrated_point(C,V,Y,YrBefore,YrAfter,ReportedCoverage,Coverage,GoCRpt,GoC) :- 
  anchor_point(C,V,YrBefore,_,_,_,GoCBefore), 
  anchor_point(C,V,YrAfter,_,_,_,GoCAfter), 
  D1 is abs(Y - YrBefore), 
  D2 is abs(Y - YrAfter), 
  CalFactor is abs(ReportedCoverage - Coverage), 
  GoC is ((GoCBefore / D1) + (1 - ((CalFactor / 100) * GoCRpt)) + (GoCAfter / D2)) / 3. 



The general structure of the WUENIC implementation 

Level one. The reported and survey data are evaluated separately,  
and if necessary are ignored or adjusted.  
 
Level two. If data are available from only a single source  
(national reports or surveys), then the estimates are based on that source alone. 
Otherwise, the estimates are made at “anchor years”,  
which are years in which there are both reported data and survey data.  
 
Level three. Estimates are made at non-anchor years, before, between and after 
anchor years, influenced by the estimates at the anchor years.   
 
Level four. The resulting estimates for the different vaccines are then cross checked  
for consistency between related vaccines, and adjustments are made if necessary.  
 
Estimates for new years are not based on estimates for previous years. 
 
 



Forward reasoning fills the triangle bottom-up. 
Backward reasoning fills the triangle top-down. 

153 

Level 3: Estimate before, between and 
after anchor years. 

Level 4: Adjust the estimates for  
consistency among related vaccines. 
 

Level 0: Unprocessed reported and survey data. 
 

Level 1: “Clean” the data.  

Level 2: Estimate at “anchor years”, with 
both reported and survey data.  
 
 

Prolog executes the rules top-down. 



The structure of the Prolog program 

154 

wuenic (C, V, Y, Prpt) :- 
    not wgd(C, V, Y, Pwrd), 
    reported(C, V, Y, Prpt),   
    survey(C, V, Y, Psurv),   
    surveySupportsReported(Psurv, Prpt). 

 

reported(egy, dtp3, 2004, 97)      

wuenic(egy, dtp3, 2004, P) 

 

survey(egy, dtp3, 2004, 94)          
 

abs(97 - 94) < 10 

surveySupportsReported(Psurv, Prpt) :- 
    abs(Psurv - Prpt) < 10. 
 

wgd(egy, dtp3, 2004, Pwgd) 

fails 

succeeds 



Solution 

XSB Prolog top-down execution puts subgoals in a table and solves 
them only once. 20 seconds per country. 
 
(Tabling was invented in H. Tamaki and T. Sato, OLD resolution 
with tabulation. Proc. 3rd International Conference on Logic 
Programming, 1986. )  

155 

Prolog top-down execution repeatedly re-solves lower-level 
subgoals. 20 minutes per country is too long. 

Problems with the Prolog implementation 



Homework 7  

Consider the set of definite clauses L: 
 
likes(bob, mary) 
likes(bob, X )  likes(X, mary) 
 
1) Which of the following Herbrand interpretations are models of L  
(i.e. make all clauses in L true)? Which of these is a minimal model of L? 
 
a. {likes(mary, bob), likes(bob, bob), likes(mary, mary)}  
b. {likes(bob, mary), likes(bob, bob), likes(mary, mary)} 
c. {likes(mary, bob), likes(bob, bob), likes(mary, mary)} 
d. {likes(bob, mary), likes(bob, bob)} 
 
2) In which of the Herbrand interpretations above is the sentence 
likes(bob, X )  likes(X, mary) (i.e.X( likes(bob, X )   likes(X, mary))) 
true? 
 
 



Lecture 8 Chapter 7   
The Louse and the Mars Explorer 

• Thermostat’s input-output behaviour 

• Fox’s input-output behaviour 

• Human input-output behaviour on the underground 

• Condition-action rules generate behaviour 

• The Production system cycle 

• Conflict resolution 

• Production systems without any representation of the world 

• Production systems with memory 

• The use of production systems to simulate goal-reduction 

• Confusion between production rules and logical implications:   
 



Production systems 

  
Condition-action rules (also called production rules) are similar to 
descriptions of behaviour.  
However,  they are used to generate  behaviour. 
  
Their conclusions can be expressed in the imperative mood: 
 
   If conditions then do actions. 
 
rather than in the declarative mood: 
 
   If conditions then you do actions. 
   



Thermostat’s input-output behaviour 
described in condition-action terms: 
 
 If current temperature is T degrees  
 and target temperature is T’ degrees  
 and T < T’ -  2° 
 then the thermostat turns on the heat. 
 
 If current temperature is T degrees  
 and target temperature is T’ degrees  
 and T > T’ + 2° 
 then the thermostat turns off the heat. 



Thermostat’s input-output behaviour  
generated by condition-action rules: 
 
 If current temperature is T degrees  
 and target temperature is T’ degrees  
 and T < T’ -  2° 
 then turn on the heat. 
 
 If current temperature is T degrees  
 and target temperature is T’ degrees  
 and T > T’ + 2° 
 then turn off the heat. 



Passenger behaviour described in  
condition-action terms: 

   
If a passenger observes an emergency on the underground,  
then the passenger presses the alarm signal button. 
 

Passenger behaviour generated by  
condition-action rules: 
 
 If I observe an emergency on the underground,  
 then I press the alarm signal button. 
 



Fox’s behaviour described in condition-action terms: 

 If the fox sees that the crow has cheese,  
 then the fox praises the crow. 
 

 If the fox is near the cheese,  
 then the fox picks up the cheese. 
 
 

Fox’s behaviour generated by condition-action rules: 

 If I see that the crow has cheese,  

 then the I praise the crow. 
 

 If I am near the cheese,  

 then I pick up the cheese. 

 



Production systems  

  Declarative memory consisting of atomic sentences, and  

  Procedures consisting of condition-action rules: 
 

   If conditions C, then do actions A. 
 

  look like logical implications, 

  but do not have a logical semantics. 

 

  Production system cycle: 

• read a current input, 

• use forward chaining to match the input with the conditions C  of 
production rules, 

• perform conflict-resolution to choose a single rule if more than 
one rule is satisfied, and 

• execute the associated actions A.  



Conflict resolution 

Several conflicting actions can be derived at the same time. 
 
For example: 
 
 If someone attacks me, then attack them back. 
 If someone attacks me, then get help. 
 If someone attacks me, then try to escape.  
 
The agent needs to use “conflict resolution” to decide what to do. 



Production Systems with no representation of the world 
 

What it’s like to be a louse: 
 
  If it’s clear ahead, then move forward. 
  If there’s an obstacle ahead, then turn right. 
  If I am tired, then stop. 
 
   Observe:    Clear ahead. 
   Do:   Move forward. 
   Observe:    Clear ahead. 
   Do:   Move forward. 
   Observe:    Obstacle ahead. 
   Do:     Turn right. 
   Observe:  Clear ahead and tired. 
   Do:   Conflict 



Production Systems with Memory 
 

What it’s like to be a Mars Explorer: 
 
If the place ahead is clear  
and I haven’t gone to the place before, 
then go to the place. 
 
If the place ahead is clear 
and I have gone to the place before, 
then turn right. 
 
If there’s an obstacle ahead  
and it doesn’t show signs of life,  
then turn right. 
 
If there’s an obstacle ahead  
and it shows signs of life,  
then report it to mission control  
and turn right. 



How to remember where you have been 

Divide the terrain into squares with co-ordinates (E, N) where  
E is the distance of the square East,  
N is its distance North, and  
(0, 0) is the square where you start.  
 
The world around you: 
    Life at (2, 1) 
    Clear at (1, 0) 
    Clear at (2, 0) 
    Obstacle at (3, 0) 
    Obstacle at (2, -1) 
    Obstacle at (2, 1). 



Your behaviour is completely predetermined: 
 

  Observe:    Clear at (1, 0) 
  Do:   Go to (1, 0) 
  Observe: Clear at (2, 0) 
  Do:   Go to (2, 0) 
  Observe: Obstacle at (3, 0) 
  Do:   Turn right 
  Observe: Obstacle at (2, -1) 
  Do:   Turn right 
  Observe:    Clear at (1, 0) 
  Remember: Gone to (1, 0) 
  Do:   Turn right 
  Observe: Obstacle at (2, 1)  and  Life at (2, 1) 
  Do:   Report life at (2, 1) to mission control 
  Do:   Turn right 



Example (Thagard, page 45)  

“unlike logic, rule-based systems can also easily represent 
strategic information about what to do”:  
 
 If you want to go home  
 and you have the bus fare, 
  then you can catch a bus. 
 
Forward chaining with the rule simulates  
backward reasoning with the belief: 
 
 You go home  
 if you have the bus fare  
 and you catch a bus. 
 



The use of production systems  
to simulate goal-reduction 
 

The fox’s reduction of the goal of having an object  
can be simulated by the condition-action rule:   
 
If I want to have an object 
then add to my beliefs that I want to be near the object  
and pick up the object. 
 
The condition-action rule approach looses  
the connection with the belief: 
 
I have an object 
if I am near the object 
and I pick up the object. 
   



Three kinds of production rules  

• Logical rules that are used to reason forward   

 (modus ponens). 

 

•  Reactive rules that implement  

 stimulus-response associations. 

 

•  Pro-active rules that simulate goal-reduction: 
 

  If goal G and conditions C then add H as a sub-goal. 

 

  Production rules have an operational,  

  but not a logical semantics. 

 
  



 
 
 
 
 
 
 
 

The world 

        Agent 
 
  Observations        Actions 
       forward chaining 
          
     
 
   

    
     

The production system view of the relationship between an 
agent and the world ??? 



Lecture 9 Chapter 8   
Maintenance Goals as the Driving Force of Life 

The fox and the crow 
 
The London underground 
 
Prohibitions as maintenance goals 
 
Database integrity constraints as maintenance goals 



    
     

Forward  
reasoning 

Forward  
reasoning 
 

   

Backward  
Reasoning 

Consequences 
Judge 
probabilities  
and utilities 

Decide 

Maintenance goal 

Achievement  

goal 

Observe Act 

The World 

Heuristic associations 

Maintenance Goals as the Driving Force of Life 

Candidate 
actions 

174 



 Intelligent agent cycle 

 

Cycle to maintain your existence, 

observe the world,  

think,   

decide what actions to perform, 

act,   

Cycle again to maintain your existence. 

 
 

 



Maintenance Goals as the Driving Force of Life 

Goal:   if I become hungry, then I have food and I eat the food. 
  
Beliefs:   an animal has an object 

if the animal is near the object 
and the animal picks up the object. 
      
I am near the cheese 
if the crow has the cheese  
and the crow sings. 
       
the crow sings if I praise the crow. 

  
    cheese is a kind of food. 
    food is a kind of object. 
 



The fox’s agent cycle 

Cycle 1 
Observation:   I become hungry. 
Forward reasoning 
Achievement goal: I have food and I eat the food. 
No candidate action. 
  
Cycle 2 
No observation.   
Backward reasoning 
New subgoals:  I am near food and I pick up the food and I eat the food. 
No candidate action. 
 
Cycle 3 
Observation:   the crow has cheese. 
Forward reasoning 
New belief:   I am near the cheese if the crow sings. 
No candidate action. 
  
Cycle 4 
No observation. 
Backward reasoning 
New subgoals:  the crow sings and I pick up the cheese and I eat the cheese. 
No candidate action. 
 
 



The fox’s agent cycle 
Cycle 5 
No observation.   
Backward reasoning  
New subgoals: I praise the crow and I pick up the cheese  and I eat the cheese. 
Action:   I praise the crow. 
 
Cycle 6 
Observation, action succeeded: I praise the crow. 
Forward reasoning,  
Remaining subgoals:   I pick up the cheese  and I eat the cheese. 
Action:     I pick up the cheese. 
 
Cycle 7 
Negative observation, action failed:  I do not pick up the cheese. 
Action, retried:      I pick up the cheese. 
 
Cycle 8 
Observation, action succeeded:   I pick up the cheese. 
Forward reasoning, remaining subgoal: I eat the cheese. 
Action:         I eat the cheese. 
  
Cycle 9  
Observation, action succeeded:   I eat the cheese.  
 
 
 



A general pattern of reasoning 

  
Observation:   An event happens. 
 
Forward reasoning: The event matches a condition of  
     a maintenance goal or belief. 
 
Achievement goal:  Eventually, after a combination of forward and backward  
     reasoning, an instance of the conclusion of a maintenance  
     goal is derived as an achievement goal. 
 
Backward reasoning: Beliefs are used to reduce the achievement goal to actions. 
 
Actions:    Action subgoals are selected for execution. 
 
Observation:   The agent observes whether the actions  
     succeed or fail. Actions that fail are retried 
      if their time limit has not expired. 
  
 



The London underground revisited 

 Maintenance goal:    if there is an emergency then I get help. 
  
Beliefs:  a person gets help if the person alerts the driver. 
 
   a person alerts the driver  
   if the person presses the alarm signal button. 
 
   there is an emergency if there is a fire. 
   there is an emergency if one person attacks another. 
   there is an emergency if someone becomes suddenly ill. 
   there is an emergency if there is an accident. 
 



A passenger’s agent cycle 

Observation:        there is a fire. 
 
Forward reasoning, new belief:   there is an emergency. 
 
Forward reasoning, achievement goal: I get help! 
 
Backward reasoning, subgoal:   I alert the driver! 
 
Backward reasoning, action:  I press the alarm signal button! 
 



observe 

act 

Maintenance goal 

 
Forward 
reasoning 

Backward  
reasoning 

Achievement 
goal get help 

press the 
alarm signal  
button  

There is a fire 

alert the driver 

If there is an emergency then get help 
 
 
There is an emergency  
 
   

Emergencies on the London underground  
 

Agent 

The world 



Prohibitions can be regarded as maintenance goals 
whose conclusion is false. 

  
    if you steal then false. 
 

i.e.    Do not steal. 
  
    if you are drinking alcohol in a bar 
     and are under eighteen then false. 
 

i.e.    Do not drink alcohol in a bar if you are under eighteen. 
  
    if you a liable to a penalty for performing an action 
    and you cannot afford the penalty 
    and you perform the action  
    then false. 
 

i.e.     Do not perform an action  
    if you are liable to a penalty for performing the action 
    and you cannot afford the penalty. 
 



Integrity constraints in databases can be regarded 
as maintenance goals 

Update:    Enoch father of Adam 
Database:   Eve mother of Cain 
     Eve mother of Abel 
     Adam father of Cain 
     Adam father of Abel 
     Cain father of Enoch 
     Enoch father of Irad 
  
     X ancestor of Y if X mother of Y.  
     X ancestor of Y if X father of Y. 
     X ancestor of Z if X ancestor of Y and Y ancestor of Z. 
 
Integrity constraints: 
 
   if X is the mother of Y and X is the father of Z then false. 
i.e.   No one is both a mother and a father. 
  
   if X is an ancestor of X then false. 
i.e.   No one is their own ancestor. 
  
 



Adam 

Irad 

Enoch 

Abel Cain 

Eve 

The ancestor relation represented as a graph 



The pattern for assimilating database updates is the 
same as the pattern for assimilating observations 

Update:     Enoch father of Adam 
Forward reasoning:  Enoch ancestor of Adam 
Forward reasoning:  X ancestor of Adam if X ancestor of Enoch 
Backward reasoning:   X ancestor of Adam  
      if X ancestor of Y and Y ancestor of Enoch 
Backward reasoning:  X ancestor of Adam  
      if X ancestor of Y and Y father of Enoch 
Backward reasoning:  X ancestor of Adam if X ancestor of Cain 
Backward reasoning:  X ancestor of Adam if X father of Cain 
Backward reasoning:  Adam ancestor of Adam  
Forward reasoning:  false 
 



Homework 8-9 

Here is a production system for operating a mine: 
 
critical   Methane   alarm   delete operate 
critical  > Methane    add operate   
operate   high < Water  pump 
operate    low < Water  pump-active  pump 
operate   high  Water     pump-active  nil 
 
alarm, pump and nil are actions.  
 
The action alarm initiates an alarm,  
which continues until a human operator turns the alarm off.  
 
The action pump initiates pump-active, which continues to hold only for a sort time 
interval of time  and stops after that, unless it is reactivated.  
 
The action  nil does nothing.  
 
operate can be viewed either as a goal or as a fact. 
 
  
 
 
 



Homework 8-9 

1. Let critical = 100, high = 20 and low = 10. Suppose the methane and water-levels 
vary as follows. Fill in the missing values for pump-active, alarm and pump 
  
  methane-level water-level   pump-active alarm pump 
time1   66  18     no 
time2   77  20   
time3   88  20.0001   
time4   99  20.00001  
time5   99  15   
time6   100  12   
time7   110  18   
time8   104  19   
time9   98  19   
time10   98  15   
 
2. Rewrite the production system in logical form as a collection of maintenance 
goals and beliefs. You may want to add a time argument to the predicates, writing 
for example methane-level(M, T) , water-level(M, T) , alarm(T), pump(T), pump-
active(T). 
 
 
 



Lecture 10 Chapter A5 The Resolution Rule   

Both forward and backward reasoning are special cases of the resolution rule.  
Resolution also includes such inferences as: 
 
From: you deal with the emergency appropriately ← you get help. 
  
        you get help ← you alert the driver. 
 
derive: you deal with the emergency appropriately ← you alert the driver. 
 
  
From  true → playing(bob)  working(bob)  (i.e. playing(bob)  working(bob) ) 
 
  playing(bob) → false  (i.e.  playing(bob)) 
 
derive  working(bob) 



Lecture 10 Chapter A5 The Resolution Rule   

  
 In propositional logic (sentences without variables) 
 given two clauses of the form: 
  
         D →E  A 
 
         A  B → C     
  
where B and D are conjunctions of atoms including the atom true, and C 
and E are disjunctions of atoms including the atom false, resolution 
derives the resolvent: 
  
         D  B → E  C. 
  
The two clauses from which the resolvent is derived are called the 
parents of the resolvent, and the atom A is called the atom resolved 
upon. 
 



Forward reasoning is a special case of resolution 

Resolution, from:   D →E  A 
       A  B → C     
 derive:      D  B → E  C. 
 
Forward reasoning is the special case where the parents are definite 
clauses, and one of the parents is a fact, where D is true and E is false. 
So D →E  A is just A 
 
Forward reasoning is a directed form of resolution: 
 
From      A 
 
and    A  B → C  
 
derive     B → C 



Backward reasoning is a special case of resolution 

 Given:    D →E  A 
     A  B → C     
 the resolvent is: D  B → E  C. 
 
Backward reasoning is the special case where the parents are definite 
clauses, and one of the parents is a denial, where C is false and E is false. 
So D →E  A is D → A and A  B → C is A  B →  
 
Backward reasoning is a directed form of resolution: 
 
From:     A  B →  
 
and   D → A    
 
derive    D  B →  
 



Two interpretations of backward reasoning. 
Interpretation 1: goal reduction 

A clause of the form    A  B →  
is a goal:  show or make  A  B 
 
Resolution with a clause  D → A    
selects one of the subgoals A and reduces it to further subgoals D 
remembering the other subgoals B 
deriving the new subgoals 
 
         D  B 
 
 
 
  



Interpretation 2: generalised modus tollens 

A clause of the form        A  B →  
is a denial/constraint    [A  B] 
 
Resolution with a clause       D → A    
to derive       [D  B] 
 
generalises modus tollens:  
From   [A ] and  D → A   derive   [D] 
 
Modus tollens is the problematic inference in the Wason selection 
task. 
 
  



Two interpretations of backward reasoning. 
The relationship between them 

 
The denial/constraint    [A  B] 
asserts that the goal         A  B  
has no solution. 
 
To show that the goal does have a solution, 
resolution attempts to refute the assertion, by deriving false (a contradiction). 
 
The atomic sentence false can also be interpreted as an empty goal  
(or empty clause). 
 
In general, resolution is used in refutation procedures, which show that: 

 
a sentence C is a logical consequence of a set of sentences S  
by showing that the set of sentences  S  { C} is inconsistent,  
by deriving the empty clause false. 

 
For example, to show A is a logical consequence of A, show {A,  A}  is inconsistent. 
Resolution derives the empty clause.  
This is equivalent to the derivation of false from A and A → false. 
 



Clauses can be represented in different forms 

Conditional form. e.g. D  B → E  C. 
 
Disjunctive form. e.g. ¬D  ¬B  E   C  where  ¬D and ¬B are negative literals.  
(A literal is an atom or the negation of an atom.) 
 
Set of literals form. e.g. {¬D, ¬B, E, C}. 
 
Resolution was originally defined by J. Alan Robinson (1965) for clauses that are 
represented as sets of literals, in which the following logical equivalences are “built-
in”: 
 
   A  A  is equivalent to A 
   A  B  is equivalent to B  A 
   A  (B C)  is equivalent to (A  B)  C. 
 
The resolvent of two clauses represented as sets: 
  
    {A}  F and  {¬A}  G  
  
is the clause:   F  G. 
 



Unification and factoring  

In the non-propositional case, resolution needs to be extended with 
unification, to make the two atoms resolved upon identical. Given: 
  
         D →E  A1 
  
 
       A2  B → C 
  
such that A1 and A2 are unifiable, the resolvent is: 
  
      D’ B’ → E’  C’ 
  
where B’, C’, D’ and E’ are obtained by applying the most general unifier 
of A1  and  A2 to B, C, D and E respectively. 
 
 
 



Unification and factoring  

 
More generally and for the set representation of clauses: 
 
Given clauses X  Y and V  W and a most general unifier  such that  
X = {A} and V = { A} for some atom A, 
the resolvent is  Y   W. 
 
Note a substitution   is a mapping of variables into terms. 
A most general unifier is the most general substitution  
that unifies two expressions, making them identical. 
 
For example, the substitution {X  a, Y  b} unifies p(X, b) and p(a, Y). 
{X  a, Y  b, Z  b} unifies p(X, Z) and p(a, Y),  
but {X  a, Y   Z} is the most general unifier of p(X, Z) and p(a, Y). 
 
 p(X, g(X)) and p(f(Y), Y) have no unifier. 
 
We write E  for the result of applying the substitution   to E. 
 
 



Factoring  

Resolution: Given clauses X  Y and V  W and  
a most general unifier   such that  
X  = {A} and V  = {A} for some atom A, 
the resolvent is  Y   W . 

 
X and V can contain several literals.  
  factors these literals into one literal. 
 
Example:  john shaves everyone who does not shave himself, 
   john shaves no one who does shave himself. i.e. 
  
    shaves(X, X) → shaves(john, X)  
   shaves(X, X) →  shaves(john, X)  
 
In clausal form (renaming variables, to avoid confusion) 
 
   {shaves(X, X) , shaves(john, X)} 
    { shaves(Y, Y) ,  shaves(john, Y)} 
 
The resolvent obtained using the most general unifier {X  john, Y  john}  
is the empty clause, showing that the clauses are inconsistent. 
 
 
 



Reasoning in classical logic involves two kinds of inference rules: 
1) Inference rules included in resolution + 
2) Inference rules needed to convert sentences into clausal form.  

1) Unification in resolution is a more efficient version of the inference 
rule: 
 

   Derive P(t) from XP(X) for any term t. 
 
 Resolution also includes backward reasoning, forward reasoning  
 and many other inferences. 
 
2)  Converting sentences into clausal form involves the use of many 
 other inference rules,  including: 

 
A →  B  is equivalent to  A B 
 (A B) is equivalent to  A   B 

 
  For example, A →  (B → C) can be converted into A  B → C  
 
 (A →  B) → C can be converted into A  C and   B → C 
 
 
 
 

200 



Conversion into clausal form eliminates  
existential quantifiers  

Y X likes(Y, X) is converted into  likes(f, X)  
where f is a constant that occurs nowhere else. 
 
 XY likes(Y, X) is converted into  likes(f(X), X)  
where f is a function symbol that occurs nowhere else. 
 
Note that in English “someone likes every one” is ambiguous.  
Is there are natural way to express the two different meanings in 
Japanese, Chinese or Vietnamese? 
 
X(X   Y  Z( Z X → Z Y)) is converted into 
 
X   Y  arbitrary(X, Y) X 
X   Y  arbitrary(X, Y) Y 
 
Note that resolution treats these two clauses as a procedure: 
To show X   Y, assert arbitrary(X, Y) X and show arbitrary(X, Y) Y. 
 
 

201 



Resolution treats X   Y  arbitrary(X,Y) X and  
X   Y  arbitrary(X,Y) Y as a procedure: 

Given  friends = {mary, john}     club = {mary, john, bob} 
To show friends   club derive false from  
 
friends   club         (0) 
X   Y  arbitrary(X,Y) X         (1)  
X   Y   arbitrary(X,Y) Y      (2) 
X   friends  X = mary   X= john      (3) 
X  club  X = mary         (4a) 
X  club  X= john         (4b) 
X  club  X= bob        (4c) 
 
arb(friends, club)  friends       (5) from (0) & (1) 
arb(friends, club)  club        (6) from (0) & (2) 
arb(friends, club) = mary  arb(friends, club) = john (7) from (3) & (5) 
arb(friends, club) = mary        (8a) from (4a) & (6)    
 arb(friends, club) = john        (8b) from (4b) & (6) 
false            from (7) & (8a) & (8b) 

 
 

202 



Comparison with logic programs 

The definition of subset can be represented as a logic program. 
 
X (X   Y  Z( Z X → Z Y)) can be translated into the program: 
 
   X   Y    Z( Z X    Z Y) 
 
Show every set is a subset of the universe, where the universe is defined by the 
clause: X  universe. Let arb be a constant symbol about which nothing is 
known, so it represents any set. 
 
Goal:  arb   universe   
Subgoal:     Z( Z arb    Z universe) 
 
   Naf:  Z arb    Z universe     
   Note any subgoal can be selected. 
 
        Naf:   Z universe 
        Succeed 
 
   Failure because one of the subgoals fails. 
Succeed  
    
 
 
 
 



The Connection Graph Proof Procedure 
 
The connection graph proof procedure (Kowalski 1974) implements resolution, 
by pre-computing links between the conditions and conclusions of clauses. 
 
         D →E  A1 
  
 
       A2  B → C 
 
It labels links with their unifying substitutions .  
These links can then be activated later when the need arises. 
 
Any strategy can be used for selecting and activating links,  
including forwards and backwards reasoning,  
generating resolvent clauses,  
whose new links are inherited from their parent clauses. 
 
In many cases, parent clauses can be deleted or over-written,  
when all their links have been activated. 
 
Links that are activated frequently can be compiled into shortcuts,  
which achieve the same effects more directly,  
like  heuristic rules and stimulus-response associations. 
 
 
 
 204 

 



Connection graphs implement resolution  
with most general unifiers pre-computed 

205 



Clauses with unlinked atoms can be deleted, so that 
resolvents sometimes replace their parents. 
New links can be computed from parent links. 

206 



In this example, the activation of links generalises 
forward reasoning 

207 



Links can be activated in parallel 

208 



Self-resolving clauses contain internal links 

209 



Backward reasoning generates a new goal clause and deletes the 
parent goal clause, as in tail-recursion optimisation 

210 



The cumulative substitutions U = s(Z), Z = s(Z’), Z’ = s(s(0)) 
compute the sum U = s(s(s(s(0)))). 

211 



Connection graphs can combine logic, search, connectionism,  
learning and decision making  
 
• Links can be weighted by statistics about how often they 

have contributed to successful outcomes in the past. 

 

• Different input observations and goals can be assigned 
different strengths (or utilities). 

 

• The strength of observations and goals can be propagated 
throughout the graph in proportion to the weights on the 
links. Activating links with the current highest weighted 
strength implements a form of best-first search, and is 
similar to the activation networks of [Maes, 1990].  

 
 
 

212 



Homework 10 
1. Use the logical equivalences: 

 
A →  B    is equivalent to   A B     (1) 
 (A B)  is equivalent to   A   B     (2)   
( A   B)  C is equivalent to   ( A  C )   (B  C)  (3) 
 A  is equivalent to   A       (4) 
(A  (B  C) is equivalent to   ( A  B)  C     (5) 
 (A  B)  is equivalent to   A   B     (6)  

 
to show that 
 (a)  A →  (B → C) is equivalent to A  B → C  
 
 (b) (A →  B) → C is equivalent to A  C and   B → C 
 
2. Use the clausal form of the definition of subset, to show that  
 (a) the empty set is a subset of every set,  
 where the empty set is defined by X empty  false 
  
 

(b) every set is a subset of the universe.  
 where the universe is defined by X universe 

 
 
 
 



Homework 10 

3. Use backward reasoning and negation as failure with the logic program: 
 
   X   Y    Z( Z X    Z Y) 
 
to show that: 
 (a) friends   club where 
 

mary  friends  john  friends   
mary  club   john  club  bob  club 
 
Note that to show a goal fails, it is necessary to show that all ways of trying 
to solve the goal fail. 

  
 (b) the empty set is a subset of every set, where the empty set is 

represented by a constant empty, and there are no clauses of the form t  
empty, for any term t . 

 
 
 
 



Lecture 11 Chapter 10 Abduction 

Abduction is the task of generating assumptions  
to explain observations O.  
 
For example, if instead of observing fire,  
I observe  there is smoke, and  
I believe  there is smoke if there is a fire. 
  
Backwards reasoning from the observation  
generates an assumption there is a fire.  
 



Abduction in the agent cycle 

Maintenance goal:    if there is an emergency then I get help. 
  
Beliefs:   a person gets help if the person alerts the driver. 
 
   a person alerts the driver  
   if the person presses the alarm signal button. 
 
   there is an emergency if there is a fire. 
    there is smoke if there is a fire. 
    
Observation:       there is smoke 
Abduction by backward reasoning:  there is fire. 
Forward reasoning, new belief:   there is an emergency. 
Forward reasoning, achievement goal: I get help! 
Backward reasoning, subgoal:   I alert the driver! 
Backward reasoning, action:    I press the alarm signal button! 
 



observe 

act 

Maintenance goal 

 
Forward 
reasoning 

Backward  
reasoning 

Achievement 
goal get help 

press the 
alarm signal  
button  

There is smoke alert the driver 

If there is an emergency then get help 
 
 
There is an emergency  
 
   

Abduction on the London underground  
 

Agent 

The world 

There is a fire 



The term abduction was introduced by the logician 
Charles Sanders Peirce (1931) 

He gave the following example: 
  
Deduction:  All the beans from this bag are white. 
    These beans are from this bag. 
    Therefore  These beans are white. 
  
Induction:  These beans are from this bag. 
    These beans are white. 
    Therefore  All the beans from this bag are white. 
  
Abduction:  All the beans from this bag are white. 
    These beans are white. 
    Therefore  These beans are from this bag. 
  
 



There can be several alternative abductive explanations 
of the same observation 

  
  

Beliefs:      the grass is wet if it rained. 
       the grass is wet if the sprinkler was on. 
  
the grass is wet is a closed predicate,  
which is completely  defined (so the closed world assumption can be applied) 
 
it rained and the sprinkler was on  are open predicates, 
which are undefined. 
 
 
Observation:       the grass is wet. 
  
Backward reasoning:           or 
  
Hypotheses:                   it rained.                            the sprinkler was on. 



There can be several alternative abductive explanations of the 
same observation. The more observations explained the better. 

  
  

Beliefs:      the grass is wet if it rained. 
       the grass is wet if the sprinkler was on. 
  
Observation:       the grass is wet.  
Additional observation: the skylight is wet. 
 
   
    Forward       Backward     
    reasoning:        reasoning:      
  
Hypotheses:                  it rained.                   the sprinkler was on. 
 
Different hypotheses can also have different probabilities.  
In Dubai, it would be more probable that the sprinkler was on.  
In Kyoto, it would be more probable that it rained. 



Abductive hypotheses should be  
relevant to the observation 

Relevance is automatically satisfied by reasoning backwards . 
Backward reasoning ensures every hypothesis is relevant to the observation. 
 
Relevance is weaker than the requirement that explanations be minimal. 
Minimality insists that no subset of the explanation is also an explanation.  
  
Beliefs:   the floor is wet if it rained and the window was open. 
    the floor is wet if it rained and there is a hole in the roof. 
    there is a hole in the roof. 
  
Observation:    the floor is wet. 
Relevant explanation:  it rained and the window was open. 
Minimal explanation:  it rained. 
Irrelevant explanation:  it rained and the dog was barking. 
  
 



Abductive hypotheses should be 
consistent with existing beliefs. 

 The consistency requirement excludes impossible explanations, such as  
it rained, if there were clothes outside and they didn’t get wet.  
 
not wet can be represented by the positive concept dry. 
 
Constraint:     if a thing is dry and the thing is wet then false. 
i.e.       nothing is both dry and wet. 
   
Belief:      the clothes outside are wet if it rained. 
Additional observation:   the clothes outside are dry. 
  
Hypothesis:     it rained 
Forward reasoning:   the clothes outside are wet 
Forward reasoning:   if the clothes outside are dry then false 
Forward reasoning:   false 
  
The derivation of false eliminates the hypothesis it rained as a candidate 
explanation of the observation the grass is wet. 



Contraries and strong negation 

 Many concepts occur as pairs of contrary positive concepts,  
like wet and dry, tall and short, big and small, good and bad.  
 
Often these contraries are expressed as negations,  
as in not wet instead of dry and not dry instead of wet.  
This use of negation is sometimes called strong negation.  
 
Viewed as a form of negation, it has the truth value gap property that 
there can be instances of a predicate that are neither true nor false. For 
example, if my clothes are merely damp, I might consider them as being 
neither wet nor dry. 
  
Contrary predicates with truth gaps are a natural way to represent vague 
concepts.  
 
For every pair of contrary predicates, we have constraints of the form: 
  
  if predicate and contrary-predicate then false. 
 



Global warming 

  

 Beliefs:    world temperatures rise  
     if there is a man-made increase in greenhouse gases. 
 
     world temperatures rise  
     if there is a natural cyclic increase. 
.  
Observation:   world temperatures are rising  
 
        Backward     
        reasoning:      
 
Hypotheses:   there is a man-made      there is a natural 
    increase in greenhouse gases.   cyclic increase 
 
We may prefer to believe a hypothesis that is judged to have greater probability.  
 
According to expert opinion, most of the observed increase in global temperatures 
since the mid-20th century is more than 90% likely to be due to the increase in man-
made greenhouse gas concentrations.  
 
But the ultimate test is what are the consequences of the hypotheses,  
and how do the consequences affect our maintenance goals. 



Abduction can be used for fault diagnosis  
  

 Beliefs:    car doesn’t start  
     if fault in the  battery. 
 
     car doesn’t start  
     if fault in the  fuel supply. 
.  
Observation:       car doesn’t start   
 
        Backward     
        reasoning:      
 
Hypotheses:    fault in the  battery      fault in the  fuel supply 
     
 
 
We may prefer to believe a hypothesis that is judged to have greater probability,  
judged by using statistics about the past. 
 
But the ultimate test is what are the consequences of the hypotheses,  
and how do the consequences affect our maintenance goals. For example, 
how easy is it to check the hypotheses by additional observations. 



In abductive logic programming (ALP) agents 
 observations O and goals G are treated the same. 

Given beliefs B, goals G and observations O, 
The purpose of an agent’s life is to generate a set   
of actions and assumptions about the world such that: 
  
   G  O is true in the minimal model of the world determined by B  .  
 
G:     if there is an emergency then I get help. 
  
B:   a person gets help if the person alerts the driver. 
  a person alerts the driver  
  if the person presses the alarm signal button. 
  there is an emergency if there is a fire. 
  there is smoke if there is a fire. 
 
O :   there is smoke 
 
G  O is true in the  minimal model of B    
where  = {there is a fire, I press the alarm button}  
 
 



ALP agents combine abduction and decision making 

There can be several, alternative  that, together with B,  
make G and O both true.  
 
The challenge is to find the best  
within the computational resources available. 
  
In classical decision theory, the value of an action is measured by  
the expected utility of its consequences. 
  
In philosophy of science, the value of an explanation is measured 
similarly in terms of its probability and explanatory power.  
(The more observations explained the better.) 
  
In ALP agents, the same measure can be used to evaluate both 
candidate actions and candidate explanations.  



Homework 11 

Given 
G:     if there is an emergency then I get help. 
  
B:   a person gets help if the person alerts the driver. 
  a person alerts the driver  
  if the person presses the alarm signal button. 
  there is an emergency if there is a fire. 
  there is smoke if there is a fire. 
 
O :   there is smoke 
:   there is a fire  
  I press the alarm button 
 
1. What is the minimal model of B  ? 
2. Show that G  O is true in the  minimal model of B  . 
 
 



Lecture 12 Chapter 11 The Prisoner's Dilemma   

The prisoner’s dilemma 
 
The dilemma about whether on not to take an umbrella 
 
Classical decision theory 
 
The role of decision making in Computational Logic 
 
Smart Choices involve paying greater attention to goals 



The Prisoner’s Dilemma in Classical Decision Theory: 
There are two prisoners, bob and john –  
Both are arrested and questioned 

Candidate actions: I cooperate  or I refuse to cooperate 

Beliefs: A prisoner gets 0 years in jail  

  if the prisoner cooperates 

  and the other prisoner refuses to cooperate 
 

  A prisoner gets 4 years in jail  

  if the prisoner refuses to cooperate 

 and the other prisoner cooperates 
 

  A prisoner gets 3 years in jail  

  if the prisoner cooperates 

 and the other prisoner cooperates 
  

  A prisoner gets 1 year in jail  

  if the prisoner refuses to cooperate 

 and the other prisoner refuses to cooperate 

 

 

 

  



    
     

   

Outcomes 
Judge 
probabilities  
and utilities 

Decide 

The World 

Prisoner’s dilemma viewed in Decision-theoretic terms 

Candidate 
actions 

231 

I cooperate or I refuse to cooperate 

Bob 



A simpler, but similar example: 
The dilemma of whether to take an umbrella 

Candidate actions: I take the umbrella or I leave the umbrella.  
    

Beliefs:   I stay dry if I take the umbrella. 
   I get wet if I leave the umbrella and it rains. 
   I stay dry if it does not rain. 

 
Assume (as in abduction) I take the umbrella . 
Outcomes :     I stay dry if it rains. 
       I stay dry if it does not rain. 

 
Assume (as in abduction)  I leave the umbrella . 
Outcomes :    I get wet if it rains. 

        I stay dry if it does not rain. 



    
     

   

Outcomes 
Judge 
probabilities  
and utilities 

Decide 

The World 

Umbrella dilemma viewed in Decision-theoretic terms 

Candidate 
actions 

233 

I take the umbrella or I leave the umbrella 



action1 

action2 

p11 

p12 

p13 

p14 

p21 

p22 

p23 

p24 

u11 

u12 

u23 

u13 

u14 

u21 

u22 

u24 

Expected utility of action1 
p11·u11+p12·u12+p13·u13+p14·u14 
 

Expected utility of action2 
p21·u21+p22·u22+p23·u23+p24·u24 
 

Decision Theory: 
to find the expected utility of a proposed action, 
find all the alternative resulting states of affairs, 
weigh the utility of each such state by its probability, and 
add them all up.  

Choose the action of highest expected utility 



Deciding whether or not to carry an umbrella 

Assume    Probability  it rains      = .1 
      Probability  it does not rain   = .9 
 
      Utility of getting wet      = – 10    
      Utility of staying dry      =    1          
      Utility of taking the umbrella   = – 2          
      Utility  of  leaving the umbrella  =  0    
 
Assume      I take the umbrella . 
Forward reasoning  I stay dry with probability 1 and  utility -2 +1. 
Expected utility         = -1 
 
Assume      I leave the umbrella . 
Forward reasoning  I get wet with probability .1 and utility -10. 
        I stay dry with probability .9 and utility 1 
Expected utility         0 -10·.1 + 1·.9 = -1 + .9 = -.1 
 
Decide    I do not carry an umbrella! 



    
     

   
Goal: if I go out  

          then I am prepared for the weather 

Act 

The World 

 The umbrella dilemma viewed in logical terms 

I go out 

I am prepared for the weather 

if I take the umbrella 

if I take the umbrella 
then..... 

Decide 

236 

I am prepared for the weather 

if I leave the umbrella 

if I leave the umbrella 
then..... 



A more practical alternative is to use lower level 

 maintenance goals  (or heuristic rules) instead: 
 
 If I go out and it is raining  
 then I take an umbrella. 
 
 If I go out and there are dark clouds in the sky   
 then I take an umbrella. 
 
 If I go out and the weather forecast predicts rain   
 then I take an umbrella. 
 
The lower level goals compile decision-making into the thinking 
component of the agent cycle. The compilation might be an exact 
implementation of the Decision Theoretic specification.  
Or it might be only an approximation. 
 



    
     

   
Goal: if I go out  

          then I am prepared for the weather 

 

Observe Act 

 The umbrella dilemma compiled into lower level goals 

If I go out  
and it is raining  
then I take  
the umbrella. 

If I go out 
and there are  
dark clouds  
then I take  
the umbrella. 

238 

shortcut: use compiled goals instead 

If I go out  
and forecast  
predicts rain   
then I take  
the umbrella. 



The Prisoner’s Dilemma in Classical Decision Theory: 

Candidate actions: I cooperate  or I refuse to cooperate 

 

Beliefs: A prisoner gets 0 years in jail  

  if the prisoner cooperates 

  and the other prisoner refuses to cooperate 
 

  A prisoner gets 4 years in jail  

  if the prisoner refuses to cooperate 

 and the other prisoner cooperates 
 

  A prisoner gets 3 years in jail  

  if the prisoner cooperates 

 and the other prisoner cooperates 
  

  A prisoner gets 1 year in jail  

  if the prisoner refuses to cooperate 

 and the other prisoner refuses to cooperate 

 

 

 

  



Decision making in the prisoner’s dilemma 

Assume (as in abduction) I cooperate 
Outcomes derived from assumption  
using forward reasoning:   
   I get 0 years in jail  

    if john refuses. 
 
    I get 3 years in jail  
    if john cooperates. 
 

Assume (as in abduction) I refuse to cooperate. 
Outcomes derived from assumption  
using forward reasoning:   
   I get 4 years in jail  

    if john cooperates. 
 
    I get 1 year in jail  
    if john refuses. 
 
 
 



In Classical Decision Theory 

Assume  Probability john cooperates with the police  = .5 
   Probability john refuses to cooperate   = .5 

  Utility = N, where N is the number of years I go to jail. 
 
Assume I cooperate 

  Utility if john refuses and I get 0 years in jail   = 0 
   Utility if john cooperates and I get 3 years in jail = 3 
Expected utility  .5·0 + .5·3        = 1.5  
    
Assume I refuse  

   Utility if john cooperates and  I get 4 years in jail = 4 
   Utility if john refuses and  I get 1 year in jail   = 1 

Expected utility  .5·4 + .5·1        = 2.5 
    
Decide I cooperate with the police! 



In Classical Decision Theory 

But assume john does the same calculation. 
Then john also refuses to cooperate! 
 
Certain outcome:  I get 3 years in jail  

     because john and I both cooperate with the police. 
 
If we both refused to cooperate with the police,  
we would have gotten only 1 year in jail. 
 
In game theory, the prisoner’s dilemma is iterated. 
The first prisoner makes a candidate decision, 
simulates the other prisoner,  
and makes a revised decision, 
etc. 
 
Alternatively, the prisoners could  evaluate their actions  
using different utilities.  
 
 
 



In Classical Decision Theory – with a less selfish utility function 

Assume  Probability john cooperates = .5 
  Probability john refuses   = .5 

  Utility = N + M where  N is the number of years I go to jail and 
    M is the number of years john goes to jail. 

 
Assume  I cooperate 

    Utility if john refuses  = 0 + 4 
    Utility if john cooperates  = 3 + 3 

Expected utility  .5·4 + .5·6    = 5 years in jail. 
    
Assume  I refuse  

    Utility if  john cooperates  = 4 + 0 
    Utility if john refuses   = 1 + 1 

Expected utility  .5·4 + .5·2    = 3 years in jail  
    
Decide I refuse to cooperate with the police! 



    
     

   
Goal: If I am arrested and I am questioned 

          then I respond to the questioning 

Observe 
Act 

The World 

 Prisoner’s dilemma viewed in logical terms 

I am arrested and  
I am questioned 

 I respond to the questioning  

if  I cooperate 

if I cooperate 
then..... 

Decide 

244 

 I respond to the questioning  

if  I refuse 

if I refuse 
then..... 



A more practical alternative is to use lower level 

 maintenance goals (or heuristic rules) instead: 
 
   if an agent requests me to perform an action,  

 and the action does not harm another person 

 then I perform the action. 

  

 if an agent requests me to perform an action,  

   and the action harms another person  

 then I refuse to perform the action. 

 
 



Smart choices – a better decision theory 

Classical decision theory assumes that all of the alternative candidate 
actions to be decided between are given in advance.  
 
But as [Keeney, 1992; Hammond et al., 1999; Carlson et al., 2008]] and 
other decision analysts point out,  
 
the assumption is not only unrealistic as a description of human decision 
making, but also unhelpful as a prescription for making better decisions. 
 
To make smart decisions, it is necessary first to identify the goals that 
motivate the alternatives. These goals might be generated explicitly by 
higher-level thinking or they might be hidden implicitly in lower-level 
heuristic rules.  
 



Lecture 13 Chapter A4  
Minimal Models and Negation  

Review: 
Truth, logical consequence, Herbrand model, definite clauses 
 
The semantics of negation as failure 
 
The distinction between operational rules and emergent properties 
 
Stable model semantics for logic programs with negative conditions 
 
Truth versus proof in arithmetic 
 
 



Truth, logical consequence and definite clauses - review 

A Herbrand interpretation is a set of ground atomic sentences,  
representing the set of all ground atomic sentences that are true. 
 
Logic programs have the form: C1  …   Cn   not D1   …  not Dm → E 
equivalently   E ← C1  …   Cn   not D1   …  not Dm  
the conclusion E is an atomic formula,  
the conditions Ci are atomic formulas, and  
the conditions not Dj are the negations of atomic formulas.  
All variables are universally quantified. 
 
If m is 0, then the conditional is called a definite clause. 
 
Goal clauses have the form: C1  …   Cn   not D1   …  not Dm 
  
All variables are existentially quantified. 
 
If m is 0, then the goal clause is called a definite goal clause. 
 
 



Minimal models of definite clause programs - review  
  

In classical logic, a sentence C is a logical consequence of a set of sentences S  if 
and only if           C is true in every model of S.  
 
Theorem: For every definite clause program P, there exists a unique minimal 
model M such that for all definite goal clauses G: 
  
  G is a logical consequence of P  
  (i.e. G is true in all models of P) 
  if and only if G is true in M. 
 
In other words, for definite clause programs P, and definite goal clauses G,  
truth in all models and truth in the minimal model M are equivalent. 
 
The minimal model of a definite clause program is generated by instantiating 
universally quantified variables with ground terms and by reasoning forwards.  



Minimal models of definite clause programs - review  

Let E be:  even(0) 
   even(s(s(X))) ← even(X) 
 
Forward reasoning generates the infinite sequence of atomic sentences:  
  
  even(0), even(s(s(0))), even(s(s(s(s(0))))),….. 
 
This set M is the minimal model of E.  
 
The maximal model: 
 

  {even(0), even(s(0)), even(s(s(0))), even(s(s(s(0)))),…..} 
 
is also a model of E.  
 
Another model is   
 
 M  { even(s(s(weird))), even(s(s(s(s(weird))))), even(s(s(s(s(s(s(weird))))))), …} 
 
But the Herbrand interpretation M  {even(s(0))} is not a model,  
because it doesn’t contain even(s(s(s(0)))). 
 
 
 
 



Negation as failure for definite programs 
is equivalent to truth in the minimal model 

Let P be: mary will go if john will go. 
   john will go if mary will go. 
  
The minimal model of P is {},  
in which no atomic sentence is true. 
Therefore all atomic sentences are false. 
Therefore all negations of atomic sentences are true. 
 
Therefore  mary will not go.  
and  john will not go. 
 
This reflects the fact that the failure to show mary will go means 
that  not mary will go is true in the minimal model of the program. 
 
 

251 



For definite clauses, the equivalence between truth in all 
models and truth in the minimal model 
does not hold for goal clauses containing negation  

For example, the goal clause not even(s(s(s(0)))) 
  
is true in the minimal model M of E:  
 
       
  even(0) 
  even(s(s(X))) ← even(X) 
 
because the atomic sentence even(s(s(s(0)))) is not true in M. 
 
However, it is not a logical consequence of E,  
because it is not true in all models of E. 
 
For example, it is not true in the maximal model of E  
(in which all atomic sentences are true). 
  
 

252 



The equivalence does not hold for goals containing 
universal quantification 

    
For example, X (even(s(s(X)))   even(X)) 
  
is true in the minimal model M of E 
because for any ground terms t that can be constructed from the constant 0 and the function 
symbol s: 
  
if even(s(s(t))) is true in M, then it must have been derived by forward reasoning using the 
ground instance even(s(s(t))) ← even(t) of the conditional in E. But then the condition even(t) 
of this ground instance must also have been derived by forward reasoning and must also be 
true in M.  
 
But even(s(s(t))) is not true in all models of E, because there exist non-Herbrand models 
containing weird individuals, for example the individual named weird. 
 
such that even(s(s(weird))) is true, but even(weird) is not true.  
The simplest and smallest such model is 
 
 M  { even(s(s(weird))), even(s(s(s(s(weird))))), even(s(s(s(s(s(s(weird))))))), …} 
 
  
 

253 



The distinction between operational rules and 
emergent properties 

The clauses/beliefs: even(0) 
     even(s(s(X))) ← even(X) 
 
are operational definitions of the even predicate 
(used to generate the minimal mode). 
 
The sentences:  not even(s(s(s(0)))) 
     X (even(s(s(X)))   even(X)) 
 
are emergent properties/goals 
(true in the resulting minimal model). 
 
A similar distinction holds between programs and their properties. 
Failure to make the distinction is responsible for much confusion. 

254 



The stable model semantics  
for logic programs with negative conditions 

Let P be: mary will go if john will go. 
   john will go if bob will not go. 
  
There are two minimal models:  
 
  {bob will go} 
and  {mary will go, john will go} 
 
{bob will go} is a model of P, because it makes the conditions of the two 
clauses in P false, which makes the two clauses in P true.  
 
But negation as failure derives that not bob will go succeeds.  
The stable model semantics for this program allows only the second 
minimal model , which is compatible with negation as failure. 
 
 
 
 

255 



The stable model semantics  
for logic programs P with negative conditions 

To check that a Herbrand interpretation  M   is a stable model of P, 
let  be  the set of all the  negative literals not q  
such that  not q is true in M. i.e.: 
 
     = {not q | q  M }  
 
(A literal is an atomic sentence or the negation of an atomic sentence). 
 
Generate the unique minimal model min(P   ) of P    
by treating the program P    as a definite clause program,  
reasoning forwards with the negative literals not q  
as though they were positive atoms.  
 
Then M is a stable model of P if and only if M = min(P   ) . i.e.: 
 
 If not q   then q  min(P   )  
  (which means that including not q in  was correct ). 
 

 If q  min(P   ) then not q    
  (which means that the inclusion of not q in  was necessary for completeness). 
 
 
 

256 



The stable model semantics:  
  

 M = min(P   ), where  = {not q | q  M}  
 

Let P be:  mary will go if john will go. 
    john will go if bob will not go. 
  
Candidate stable model  M = {bob will go}. 
         = {not mary will go, not john will go} 
M is not stable because  min(P   ) = {}. 
 
Candidate stable model  M = {mary will go, john will go}.   
         = {not bob will go} 
 is stable because   min(P   ) = {mary will go, john will go}. 

 
The stable model semantics is the basis for answer set programming, 
a recent, new logic programming method. 
 
 
 
 

257 



The stable model semantics:  
  

M = min(P   ), where  = {not q | q  M}  
 

A program can have more than one stable model: 
 
P:    p  not q 
 q  not p 
 
has two stable models {p} and {q}. 
 
A program can have no stable models: 
 
P:    p  not p 
  
 
 
 
 

258 



Truth versus proof in arithmetic 

The standard model A of arithmetic is  
the minimal model of the definite clause program: 
  
+(0, Y, Y)      i.e. 0 + Y =Y  
+(s(X), Y, s(Z)) ← +(X, Y, Z)   i.e. s(X) + Y = s(X + Y) 
  
(0, Y, 0)      i.e. 0  Y =0 
(s(X), Y, V) ← (X, Y, U)   
 +(U, Y, V)      i.e.  s(X)  Y = (X  Y) + Y 
 
 
The Peano axioms of arithmetic are emergent properties,  
which are true in A. 

259 



Infinitely many instances can sometimes by inspected 
finitely by using mathematical induction 

   X (+(X, 0, X)) is true in A.  
   
Base case: X = 0. Then +(X, 0, X) is +(0, 0, 0), which is true in A 
 
  because it is an instance of the clause +(0, Y, Y).  
  
Inductive case: X = s(n). By induction hypothesis, +(n, 0, n) is true in A. 
 
  We need to show  +( s(n), 0, s(n)) is true in A. 
 
  But this follows by forward reasoning, using 
   
  +(s(X), Y, s(Z)) ← +(X, Y, Z).   
  
This semantic argument can be expressed purely syntactically,  
by augmenting the definite clauses with axioms for induction,  
as in Peano arithmetic.  

260 



Truth versus proof in arithmetic 

 
 

The incompleteness of any axioms for arithmetic 
is a consequence of the fact that  

 
to show a universally quantified or negative sentence is true,  
it is necessary to inspect infinitely many atomic sentences, and 

 
There exist sentences, whose infinitely many instances  
do not conform to any finitely recurring pattern. 
 

These infinitely many instances cannot be inspected 
finitely even using mathematical induction. 

 
261 



Lecture 14    

Conclusions 
 

•  Computational logic as the language of thought 
 

•  Computational logic for better communication 
 

•  Computational logic for conflict resolution 
 

•  Computational logic as a unifying framework 
 

 
 
 



Computational Logic as the Language of Thought 
 
According to relevance theory [Sperber and Wilson, 1986],  
people understand natural language by attempting  
to extract the most information for the least processing cost. 
 
It follows that: 
 
If you want your communications to be easy to understand,  
then you should express them in a form that is as close as possible 
to the Language of Thought. 
 
We can get insight into the nature of the Language of Thought 
by studying advise about effective natural langugage 
communication. (Perhaps the best book for English is  
Joseph William’s  Style.) 
 
 
 

263 





To express yourself clearly in natural language 

1. Avoid ambiguity. e.g.  
  
  John gave the book to Mary.  
 instead of: 
 He gave her the book. 
 
2. Avoid unnecessary complexity. e.g.  

 
Because we knew nothing about local conditions,  
we could not determine how effectively the committee had allocated 
funds to areas that most needed assistance. 
Instead of: 
Our lack of knowledge about local conditions precluded  
determination of committee action effectiveness in fund allocation 
to those areas in greatest need of assistance. 

 

3. Connect  related ideas together. 
 

265 

clarity 

coherence 

simplicity 



Williams: Two Principles of Coherence 

 1. Put at the beginning of a sentence those ideas that you have 

already mentioned, referred to, or implied, or concepts that you 

can reasonable assume your reader is already familiar with, and 

will readily recognise. 

 

 2. Put at the end of your sentence the newest, the most 

surprising, the most significant information: information that you 

want to stress – perhaps the information that you will expand on 

in your next sentence. 



Coherence 

Example:   A.  
    If A then B.  
     If B then C.    
    Therefore C. 
     

Example:   C?   
    C if B.   
     B if A.    
    A.  
    Therefore C. 
     



Computational logic as a model of the LOT can help 
people to communicate more effectively 

 
By expressing communications: 
 
Clearly   So that their intended meaning is less ambiguous. 
 
Simply  So that their expression is closer to their 
   mental representation. 
   
Coherently   So that it is easier for the reader/listener 
   to connect new information to old information. 
 
 
 

268 



Important related topics missing from this course/book 

Learning  
 
Uncertainty 
 
Case based reasoning 
 
Connection with connectionism (neural networks) 
 
Multi-agent systems 
 
Conflict resolution 



Conflicting ways of solving different goals can sometimes 
be resolved by finding alternative solutions e.g. 
 
Achievement goals: 
 
 Improve enjoyment of life 
 
 Provide for old age 
 
Beliefs: 
 
 You improve enjoyment of life 
 if you work less hard. 
 
 You provide for old age,  
 If you save money and work harder. 



Conflicting ways of solving different goals can sometimes be 
resolved by finding alternative solutions 

 

             Improve enjoyment of life 
     
         

                                 
                          

                           or   
    

          
         
     

                   Provide for old age             Improve         Work less hard  
             standard of  living                         
  
                and     

          
 

                    Save money  Increase pay 
 

             
         

                 or  
 

       

                  
         
   Go on strike         Work harder 



The Israeli-Palestinian Conflict 
 
“The Last Negotiation” by Hussein Agha and Robert Malley, 
Foreign Affairs, May/June 2002 
 
Israel’s basic interests (goals) 
 

 1) Jewish character and majority in Israel 
 2) Security 
 3) International recognition and normalcy 
 4) Control over Jewish holy sites and national symbols 
 5) End conflict with Palestinians and Arab States. 
 
Palestinian basic interests (goals) 
 

 1) Live in freedom, dignity, equality and security 
 2) End occupation and achieve national self-determination 
 3) Resolve refugee issue fairly 
 4) Control over Muslim and Christian holy sites 
 5) Ensure solution is accepted by Arab and Muslim worlds. 

 
 



Proposed solution: 
 

1) Territorial issue. Land swaps, with the equivalent of  
 100% of the land lost in 1967. 
 
2)  Security. Non-militarization of Palestine  
 and international force. 
 
3) Jerusalem. Demographic and religious self-governance. 
 
4) Haram al-Sharif or Temple Mount. Practical arrangements to 

meet both sides needs. 
 
5) Palestinian refugees. Settle refugees in Arab-populated parts of 

Israel and include these in the land swap with Palestine, and 
also provide generous financial compensation. 

 



Conflict analysis and resolution 
 

To reconcile conflicting goals  GA of agent A and  
        GB

 of agent B, 
 
it is sometimes possible to find 
higher-level goals    HA1

  of agent A and  
        HB1 of agent B 
 

and additional goals   HA2
 of agent A and  

        HB2
 of agent B 

 
and solve the co-operative goal 

 

  HA1
 and HA2

 and HB1
 and HB2 

 

subject to some minimum degree of satisfaction of both 
  HA1

 and HA2
 and HB1

 and HB2  
 

 



    
     

   

Decision theory 
Production 
systems 

Clausal form of FOL 

Minimal model semantics 

Heuristics 

  Computational Logic as a unifying framework  

Logic 
programs 

Abduction 



    
     

   

Consequences 
Decide 

Maintenance goals 

Achievement goals 

Observations 
Actions 

Minimal model semantics 

Lower-level maintenance goals 

Candidates 

276 

Computational Logic as a unifying framework 

Abductive  
explanations 

Consequences 

Decide 


