PREFACE

My debts to the literature will be acknowledged at the appropriate places. I have a particular debt to Timothy Smiley, from whom I first learned logic. I should also thank the many students in Edinburgh who have helped me improve my understanding of the subject.

The book is dedicated to Winifred Rushforth OBE for dreams made true.

N.W.T. Edinburgh 1978

ACKNOWLEDGEMENTS FOR THE REPRINTING

I am especially indebted to Göran Sundholm, Wilfried Sieg and Tatsuö Fujimara for drawing my attention to mistakes and misprints in the first printing.

N.W.T. Ann Arbor 1986
CONTENTS

Introduction p.ix

1
Preliminaries p.1

2
Form and structure of sentences p.9

3
Classical truth conditions p.21

4
Form and structure of proofs p.39

5
Propositional metalogic p.87

6
First order metalogic p.113

7
First order theories p.135

Notes p.178

References p.181

Exercises p.185

Glossary p.191

Index p.193

*
INTRODUCTION

This is a logic text that attempts to reach major results with a minimum of fuss. It has grown out of lectures in the University of Edinburgh on introductory and mathematical logic. In writing it I have had in mind two kinds of reader. The first is the student of philosophy who is studying logic and who wishes to acquaint himself with results of a mathematical nature. The second is the student of mathematics who finds mathematical logic sufficiently different from the staples of algebra and analysis to need a gentler introduction to the ideas behind logical systems.

Chapters 1-4 provide material for an introductory course in logic. How much of the technical material in Chapter 4 is used will depend on the ability of the class. Easy exercises on translation and proof can no doubt be supplied by the tutor. More interesting exercises on the introductory material are supplied at the end of the text. These have been drawn from past examination papers in the University of Edinburgh.

Chapters 4-7 provide material for a course in mathematical logic. Again, how much material from earlier chapters is used will depend on the class. The main feature of our treatment is that the elegant systems of natural deduction due to Gentzen and Prawitz are made the object of both syntactic and semantic investigation. We prove all the main completeness and incompleteness results. In doing so we illustrate the three main methods of proof employed by the mathematical logician. These are (i) induction on complexity of syntactic objects (sentences, proofs, etc.), (ii) consistent maximalization of sets of sentences and the construction of natural models (Henkin's method), and (iii) diagonalization. Incompleteness of arithmetic is established twice over, by diagonalization within and diagonalization without.

We assume familiarity with the rudiments of set theory. The growing interest in intuitionism among philosophers of language is served by an account of the relationship between classical and intuitionistic logic, and of Kripke semantics for the latter. Also of interest to the philosopher will be the account of universally free logic for descriptions in Chapter 7.
CHAPTER 1

Preliminaries

1.1
Arguments p.2
1.2
Validity of arguments; sentences and situations p.2
1.3
First order language p.4
1.4
Proofs and systems of proof p.5
1.5
The place of logic in mathematics and philosophy p.7
1.1 Arguments. Logic is the study of arguments. An argument is understood here to consist of a set of premises, an inference marker and a conclusion. For brevity we shall let \(\Lambda \) stand for a set of premises. A slash will represent the inferential move, and \(\varphi \) will stand for the conclusion. The schematic form of an argument is therefore \(\Lambda / \varphi \), or \(\frac{\Lambda}{\varphi} \). In summary settlement of Cartesian controversy we offer as an example (Cogito) Sum.

By talking of \(\Lambda \) as a set of premises we are ruling that the order in which the premises are given is irrelevant. No premise should depend, for its meaning or argumentative force, on the order in which the premises are given.

No premise should be ambiguous. In particular the context of the argument should be determinate enough to fix the reference of words like 'I', 'you', 'here' and 'now', so as to fix the force of premises containing them.

These observations apply to the conclusion of an argument as well.

An argument may have infinitely many premises. That one would not be able to finish stating them one by one we shall regard as a strictly non-logical difficulty.

Arguments can be trivial, simple, obvious; tortuous, ingenious, profound. The main properties of logical interest, however, are validity and provability.

1.2 Validity of arguments: sentences and situations. We take validity first. Perhaps the best explanation of this notion is by way of the following informal definition:

\[\Lambda / \varphi \text{ is valid if and only if whenever all the premises in } \Lambda \text{ are true, the conclusion } \varphi \text{ is true also.} \]

A valid argument is a truth-preserving one. By our definition an argument \(\Lambda / \varphi \) is invalid if and only if there could be some situation in which all the premises in \(\Lambda \) were true, but the conclusion \(\varphi \) was false. Such a situation would be called a counterexample to the argument.

When \(\Lambda / \varphi \) is valid, we also say that \(\Lambda \) logically implies \(\varphi \), or that \(\varphi \) is a logical consequence of \(\Lambda \). We write \(\Lambda \models \varphi \).

So far we have used 'premiss' and 'conclusion' neutrally, without saying exactly what kind of entity premises and conclusions are. Are they utterances? inscriptions? statements? sentences? propositions? Are they physical, mental or otherwise abstract entities? Finally - a question raised by our definition of validity — in what does their being true or false consist?

At this point we are obliged to take an expository leap. Premisses and conclusions will be understood to be sentences of some given language. A sentence is an abstract and internally structured entity of a kind that makes it comprehensible to say that a sentence has been written twice but never uttered, or that there is a sentence that is so long that no person could ever utter it or write it down. Following a more mathematical approach, one might construe a sentence as a finite sequence of symbols. Sequences are abstract, set-theoretic entities. Moreover the symbols involved are themselves abstract entities not identifiable with any of their concrete or physical realizations as utterances or inscriptions.

Relying on these brief remarks to clarify the status of sentences, we observe that there now remains the task of explicating the notion sentence \(\varphi \) is true in situation \(\mathcal{W} \)

(Capital Germanic letters are used in speaking about situations; or, more precisely, as variables ranging over situations.)

Thereafter we can define \(\Lambda \models \varphi \) to mean

for every situation \(\mathcal{W} \), if every member of \(\Lambda \) is true in \(\mathcal{W} \)

then \(\varphi \) is true in \(\mathcal{W} \) also

thereby making precise the phrase 'whenever' in the informal definition of validity above.

The situations under consideration may be abstract or concrete. An abstract example would be that consisting of the counting numbers 0, 1, 2, ... with their usual additive and multiplicative structure. A concrete example would be a party of people in various spatial, emotional and legal relationships. Hybrid examples, like Pascal sitting alone and thinking of numbers, are somewhat recalcitrant and best left to philosophers.

Built into the notion of a situation is the correlation of words with things — of names with the individuals named, and of predicates ('... is bald', '... loves _____') with the individuals of which they hold. Only the so-called logical words such as 'not', 'and', 'all' have interpretations that are held constant for all situations. Thus we construe the term 'situation' broadly enough to prise non-logical words loose from their usual meanings. Logically, we might have a situation in which the predicate '... is a dog' applied to cats, or to members of any arbitrary collection of things.

This explanation of 'situation' raises the question how one distinguishes between logical and non-logical words. There is as yet no universally accepted formulation of a criterion or principle for drawing the distinction, but we are usually left in no doubt as to particular
cases. At worst, we can simply write down a definitive list of those words we intend to treat as logical.

The need to specify the situation in which a sentence is true should be apparent. For example, even with the usual interpretations of 'greater than' and 'less than', the sentence 'No number is greater than 0 but less than 1' is true of the counting numbers 0, 1, 2, ... but is not true of the rational numbers, since $\frac{1}{2}$ is greater than 0 but less than 1. Here, of course, the problem is what are to count as numbers in the situation concerned.

A full specification of any particular situation would in principle settle all problems such as this. In general a situation consists of a domain of individuals, often called the universe of discourse, along with a correlation of non-logical words with those individuals. The individuals in the domain are all and only those deemed to exist in the situation concerned. A predicate such as '... is bald' would be correlated with just those individuals of which it is deemed to hold; and so on. Considerable simplification and idealization is involved here. We are assuming that the domain of individuals can be clearly circumscribed. We are assuming also that there is a determinate answer to the question whether a given individual possesses a certain 'property' (as expressed by some predicate), or enters into a certain 'relation' with other individuals. More fundamentally we are assuming that, in order to account for how sentences are true or false, we should regard their subject matter -- the reality to which they are addressed -- as composed of discrete individuals standing in determinate relations to one another. We shall not attempt a detailed philosophical justification of this atomistic ontology, but simply draw the reader's attention to its central importance for logical semantics. We shall content ourselves with showing that if it is adopted then a most satisfactory account can be given of the truth conditions of sentences of a certain language.

1.3 First order language. The language in question is simple but of considerable expressive power. It is adequate for the expression of almost all mathematics. Moreover, within limits to be expected of any idealization, its sentences can be regarded as representing the underlying logical forms of sentences of English. It therefore lends itself to two uses: the development of mathematics, and the provision of workable 'translations' for English sentences. We are thus able to assess the validity of each of a wide class of English arguments by translating its premisses and conclusion into sentences of this special language and then assessing the validity of the translated version of the argument. Because sentences of our special language are unambiguous and because we shall have a very precise understanding of the conditions under which they are true or false, we shall be well placed to assess the validity of the translated argument.

The special language in question, which has come to be known as the language of first order logic, is due essentially to Frege. The language is of first order because it permits generalizations about individuals but not about their properties and relations. For example, in a first order language one can express

John loves everyone but Mary

but not

John is everything but a lover to Mary.

Sentences of a first order language can be used to describe the elementary situations discussed above. How precisely a given situation can be described in this way is a deep and interesting question. In the mathematical literature situations are called models. Model theory is that branch of mathematical logic that addresses itself to questions such as the last one. In model theory we investigate the algebraic properties of models, on the one hand, and their connection with the structural (or syntactical) properties of sets of sentences used to describe those models, on the other. Certain model-theoretic results obtained in later chapters will give the reader some idea of the expressive limitations of first order languages.

1.4 Proofs and systems of proof. An argument may be valid without its validity being at all obvious. Remember that we are using 'argument' in such a way that any set of premisses, followed by a conclusion, counts as an argument. Thus Hilbert's axioms for Euclidean geometry, followed by Pythagoras's Theorem about squares on sides of right triangles, form an argument. It happens to be valid. If, however, I were to state Hilbert's axioms, pause, say 'therefore' and then state Pythagoras's Theorem, you may remain quite unpersuaded that Pythagoras's Theorem is a logical consequence of Hilbert's axioms. To take another example, no-one yet knows whether every even number greater than two is the sum of two primes. That this is so might, however, at some future date be discovered to follow logically from arithmetical axioms that we presently hold true of the counting numbers.

In order to demonstrate the validity of an argument one needs a proof. A proof of an argument is a detailed representation of valid transition from its premisses, taken as starting points, to its conclusion as terminus. Within a proof this transition is effected by a
series of steps, or 'inferences', each one of which is obviously valid.

A system of proof is a codification of these obviously valid kinds of inference, which we call rules of inference. An example of a rule of inference is 'From \(\varphi, \psi \) infer \(\varphi \land \psi \)'. A proof in accordance with these rules must, in order to meet the demands of certainty, satisfy the following conditions:

(i) It must be of finite size.
(ii) Every one of its steps must be effectively checkable: that is, a machine or some other kind of comprehensively briefed moron must be able to determine each step, in a finite time, whether it is in accordance with one of the basic rules of inference of the system.
(iii) We must be able effectively to read off the premises and conclusion from the proof — otherwise we shall not know what argument's validity the proof establishes.

Depending on the strength of the proof system, a valid argument whose validity is not obvious may be turned into a proof by expanding the inferential move in the statement of the argument into a series of inferences, each in accordance with one of the rules of inference of the system. Converting a valid argument into a proof in this way is the penultimate step in perfecting the argument. Once we have a proof we may try to improve matters further by

(i) eliminating dead ends (sub-proofs whose conclusions are not used as intermediate premises on the way to the main conclusion);
(ii) eliminating detours (sub-proofs which amount to a proof of something from itself); and
(iii) seeking a new proof from fewer of the premises, or from weaker premises.

A proof system on whose proofs the first two of these operations can always be carried out fully is said to have the normalization property. Success in the last operation depends not on the system but on the user.

Obviously there must be no invalid proofs in our system. The system, that is, must be sound for the language concerned. Moreover we wish to be able to prove any valid argument expressible in the language. The system, that is, must be complete for the language. Note that since proofs employ only finitely many premises the proof system will be complete for the language only if the relation of logical consequence in that language is compact — which means that any logical consequence of given premises is a logical consequence of only finitely many of those premises.

Logical consequence in our first order language is compact; and we shall develop a proof system that is sound and complete for the language, and that has the normalization property. This proof system, due to Gentzen and Prawitz, is the system of so-called natural deduction. Proofs in this system reflect underlying patterns of ordinary reasoning as closely as sentences of our formal language reflect the underlying forms of sentences of ordinary language. Proof theory, that branch of mathematical logic complementary to model theory, is best approached via natural deduction and kindred systems of proof. In proof theory we study ways of manipulating, transforming and simplifying proofs so as to learn more about the properties of the whole proof system.

1.5 The place of logic in mathematics and philosophy. Formal languages and proof systems have been developed first and foremost for the rigorous expression and exposition of mathematical theories. These involve modest resources of expression (by comparison with ordinary language) but long and complicated chains of reasoning (by comparison with ordinary argumentation) and are therefore eminently suitable for logical treatment.

It is also possible, as observed above, to use the formal language to formalize English arguments and to use the proof system to construct rigorous proofs of them. Honesty, though, compels one to admit that ordinary arguments for which this is not overly complicated tend to be of a rather humdrum variety. This has lead, among other things, to the immortalization of Socrates by simple arguments purporting to establish his mortality. Nevertheless, translating back and forth between English sentences and sentences in the formal language, and constructing proofs of valid arguments and counter-examples to invalid ones are the main skills to be acquired at an introductory level. At an intermediate level one is introduced to relatively easy results about the internal workings of the proof system.

The 'logical treatment' of mathematical theories alluded to above is really of a different nature. It is actually very difficult to give strict logical proofs of even simple mathematical theorems from the axioms of the mathematical theory concerned. Mathematicians use many definitional abbreviations and long jumps in reasoning, and a clear, convincing mathematical argument is usually no more than a very sketchy recipe for finding the corresponding strict, logical argument in the formal system of proof. The importance of logic for mathematics does not lie in doggedly translating axioms and theorems into formal notation and then supplying the missing minutiae of reasoning. It lies, rather, in answering certain general foundational questions about any mathematical theory. What is the structure of the language
in which the theory is expressed? What are the primitive notions and principles on which the theory is based? What are the methods of definition and proof by which the theory is developed? Answers to these questions yield a language and a proof system in which the theory is expressed and developed. One can then ask: Does the proof system provide proofs for all and only the valid arguments expressible in the language? Is the theory consistent? To what extent does it say all that can be said about its subject matter? To what extent does it characterize exactly the structure of its subject matter? Is there a mechanical method for deciding of any given sentence whether it is a theorem of the theory?

Questions such as these are the concern of so-called metalogic and metamathematics. Foundational research has provided a body of results which, within reasonable margins of interpretation, provide determinate answers to these questions. Languages and deductive systems have been formalized, axiom systems have been investigated. Limits of expressive and deductive power have been charted. A family of metalogical and metamathematical notions has grown up, and their interrelationships have been clearly worked out. The resulting clarification of the concepts of number and set, finitude and infinity, construction and proof, mechanical and non-mechanical procedure, is one which no philosophy of mathematics can ignore.

Modern logic has encountered and generated many problems of continuing philosophical interest. These are not of a parochial and technical kind, but lie at the heart of modern metaphysics. Questions about reference, identity and existence, and about truth and meaning cannot now be discussed without knowledge of the standard analyses provided by logic. Philosophers have also extended their logical investigations to other central areas of metaphysics. The notions of time and causality, necessity and possibility, belief and knowledge, obligation, permission, power and prohibition, to name a few, have been studied from a logical point of view. Formal languages have been developed with new vocabulary for the new notions. Guidelines have been provided for translation between the formal languages and fragments of English involving terms for these notions. Accounts have been given of how the formal languages are to be interpreted, and of how the truth or falsity of their sentences depends on these interpretations. In some cases proof systems have been provided to generate the new arguments formulable in the extended formal language. In trying thus to systematize and clarify these important notions philosophical logicians have made a substantial impact on the form of modern metaphysical discussion.
2.1 Logical form and surface form. Aristotle was perhaps the first logician to see that an argument is valid by virtue of its form. The notion of logical form is a difficult one to analyse, and is best understood by way of examples.

Aristotelian syllogisms are basic forms of valid argument. A syllogism such as

- All A's are B's
- All B's are C's
- All A's are C's

represents the form of particular valid arguments which may be called instances of that form. Examples of particular arguments with the form above are

- All Armenians are Bolsheviks
- All Bolsheviks are Communists
- All Armenians are Communists

and

- All tigers are humans
- All humans have tails
- All tigers have tails

The latter example makes the well-known point that one may reason validly from false premises to a true conclusion.

Aristotle perfected arguments by interpolating steps of basic syllogistic form between premises and conclusion. His method works, however, only for a limited class of arguments, since he allows as premises and conclusions of syllogisms only sentences of the forms All A's are B's, Some A's are B's, All A's are not B's, and Some A's are not B's. Consequently Aristotelian syllogistic is unable to classify as valid or invalid arguments such as

- All horses are animals
- All horses' tails are animals' tails

or

- Someone is loved by everyone
- Everyone loves someone

The limitations of Aristotle's method are nowhere more apparent than in mathematics, where arguments usually involve sentences with multiple occurrences of phrases involving the words 'some' and 'every', such as

For every number a and for every number b if a is not zero then there is some number q and some number r such that

\[b = (a \cdot q) + r. \]

It was in order to deal with such cases of so-called multiple quantification that Frege invented the formal language to be developed in this chapter.

A well-known form of valid argument is

\[P(a) \quad a \text{ has property } P \]
\[a = b \quad a \text{ is identical to } b \]
\[P(b) \quad b \text{ has property } P \]

known as the law of substitutivity of identicals, or Leibniz's Law. Now it would appear that the following invalid argument is of this form:

- The colour of the sky is changing
- The colour of the sky is blue
- Blue is changing

In this case, however, appearances are deceptive. On the surface, one might say, the argument appears to have the form of a substitution of identicals. A deeper analysis, however, reveals a complexity in the phrase 'is changing' whose concealment is responsible for the argument's apparent conformity to Leibniz's Law. This analysis results in a reformulation of the two premises, which, upon substitution of identicals, validly yield a revised conclusion:

- The colour which happens to be the colour of the sky now is different from the colour which will happen to be the colour of the sky a little later than now
- The colour which happens to be the colour of the sky now is the colour blue
- The colour blue is different from the colour which will happen to be the colour of the sky a little later than now.

This new argument genuinely conforms to Leibniz's Law. The lesson is that we must distinguish the surface forms of sentences from their logical forms when appraising arguments involving them.

On the other hand, some arguments can be seen to be valid without having to reveal every detail of the logical form of the sentences involved. For example, the argument
Either someone is rich or everyone is bald
Not everyone is bald
Someone is rich

is valid because it is an instance of the form

Either ϕ or ϕ
Not-ϕ
ϕ

In order to show this argument to be valid it is not necessary to uncover the details of the logical form of the sub-sentences 'Someone is rich' and 'Everyone is bald'. Quine has formulated what he calls the maxim of shallow analysis: do not uncover any more logical form than is necessary in order to show an argument to be valid. For another illustration of this maxim see 4.14.

2.2 Categories and categorial analysis. What forms of sentences are to be provided for in our formal language? The answer to this question is the precise definition below of well-formed formula. In order to understand how we arrive at this definition we must first examine the method of categorizing expressions and analysing their categorial structure. We begin by considering sentences of the simplest kind, whose surface and logical form are more or less indistinguishable.

For present purposes we need only two basic categories of expression — Sentence and Name, abbreviated as S and N respectively. Each has a peculiar importance, which may be offered as good reason for taking it to be basic. First, sentences are our truthbearers. They are the minimal linguistic units by which we can make a statement or assertion, or express a proposition. Secondly, names effect the most primitive connection between language and its subject matter. In our conception of the truth or falsity of a sentence arising in a determinable way from its structure and from correlations between certain of its expressions and the world, no such correlation can be simpler than the naming relation, the relation between a name and the single object for which it stands.

Obviously not all expressions are of category S or N, so non-basic categories will have to be invented. This cannot be done in an arbitrary or random way, since the guiding principle behind correct categorization of expressions is that we should be able to explain the powers of combination of various expressions to form new ones.

Let us illustrate this with an example. There is no doubt that the expression 'John is fat' is a sentence and that the contained expression 'John' is a name. What about the remainder? If we remove the name from the sentence there remains the non-basic expression '_____ is fat'. This expression deserves definite categorization because of its power of combination with names to produce sentences: John is fat, Mary is fat, Bill is fat, etc. Each of these sentences is produced by completing the non-basic expression '_____ is fat' with a name. For this reason '_____ is fat' is also called an incomplete expression. We assign it to that category of expressions that, upon completion by a name, yield a sentence. We label this category 1SN because completion of any expression in it by one expression of category N yields an expression of category S.

Now consider the sentence 'John loves Mary'. Upon removal of both names we are left with the incomplete expression '_____ loves ...'. This expression, upon completion by two names, yields a sentence. Thus its category is 2SNN. But had we removed only the name 'John' we would have obtained '_____ loves Mary', which, like '_____ is fat' may be completed by one name to yield a sentence. Thus '_____ loves Mary' is of category 1SN. Obviously this is not all that can be said; for we see that '_____ loves Mary' results from completion of the second blank of '_____ loves ...' by the name 'Mary'. Thus '_____ loves Mary' is an expression of category 1SN built up by combining expressions of category 2SNN and N:

\[
SNN N = 1SN.
\]

Thus we have not only categorized '_____ loves Mary' as 1SN; we have also given it the categorial analysis 1SN = 2SNN N.

In general, given any expression we may try both to categorize it and to give it a categorial analysis. As can be seen from our example, a successful categorial analysis will tell us what the overall category is. The best way to categorize an expression is to regard it as the result of removing expressions of known categories from an expression of known category. We have to ensure that our earliest categorizations are correct for this method to work. So we work with very simple expressions in order to reduce the possibility of error.

One mistake we must not make is to assign to category N any expression that has not first been seen to satisfy certain minimal requirements. Let us therefore formulate some necessary conditions for n to be a name — conditions that must be satisfied by any name, even though their satisfaction by an expression is no guarantee that it is a name.
First, the inferences

John is fat
John is bald
John is fat and bald
are obviously valid. We make it a requirement that, for \(n \) to be a name, the English forms of inference
\[
\begin{align*}
 n & \text{ is } P \quad n & \text{ is } (P \text{ or } Q) \\
 n & \text{ is } Q \quad n & \text{ is } P \text{ or } n \text{ is } Q \\
 n & \text{ is } (P \text{ and } Q)
\end{align*}
\]
be valid. Secondly, the inference

John loves Mary
Mary is loved by John

is obviously valid. We make it a requirement that, for \(m \) and \(n \) to be names, the English form of inference
\[
\begin{align*}
 m & \text{ R's } n \\
 n & \text{ R'd by } m
\end{align*}
\]
be valid.

Now let us attempt a categorial analysis of the sentences 'Someone is fat' and 'Everyone is fat'. If 'Someone' and 'Everyone' are names, then the analysis in each case will be \(S = 1S1N \ N \). But are they names? Definitely not, as we see from the invalidity of the following three inferences:

Someone is fat
Someone is bald
Someone is fat and bald
Everyone is fat or bald
Everyone is fat or everyone is bald

There is a simple counterexample to all three inferences. Suppose John and Mary are the only individuals. John is bald but not fat and does not love himself. Mary is fat but not bald but does not love herself, and they love one another. In this situation the premises of each inference are true but its conclusion is false.

The question now arises, if 'Someone' and 'Everyone' are not names, what is their category? Following the simple method suggested above, consider the sentence 'Someone is fat'. We already know that the category of '____ is fat' is \(1SN \). Upon removing it from the sentence we obtain 'Someone ____' which we thus assign to the category \(1S1SN \) - since upon completion by one expression of category \(1SN \) it yields a sentence. By the same procedure, 'Everyone ____' is of category \(1S1SN \) also. What now of the categorial analysis of the sentence 'Someone is fat'?

We have

Someone ____ is fat = Someone is fat

where the blank in 'Someone ____' is filled by '____ is fat' without any blanks remaining. This elision of blanks is represented in the categorial notation thus:

\[
S = 1S1SN \ 1SN
\]

The mode of combination represented here is called quantification. It is in cases of multiple quantification that our categorial analysis is conspicuously successful. We are able to distinguish between the modes of combination in 'Everyone loves someone' and 'Someone is loved by everyone' as follows:

Everyone ____ loves ____ Someone ____

\[
\begin{align*}
1S1SN & \ 2SNN & 1S1SN & \text{ Everyone loves someone} \\
1S1SN & \ 2SNN & 1S1SN & \text{ Someone is loved by everyone}
\end{align*}
\]

Obviously very complicated categories and modes of combination can be generated by the method followed so far. We shall be interested only in those involved in the formal language to be developed below. The general and precise definition of category, and statement of rules of combination, is beyond the scope of this book. Suffice it to say that categorial analysis along these lines helps to clarify the logical form of sentences as it arises out of their order of construction from simpler expressions of known categories. It was this analysis, due to Frege, which gave rise to modern logic. Sentences are regarded as internally structured in an hierarchical fashion; and this internal structure is an important determinant of both their truth conditions and their logical interrelationships.

2.3 Logical vocabulary. The internal structure of a sentence should be clear from any representation of its logical form. The same structure may be represented in different ways; we are interested in structure which is represented by, and invariant with respect to changes of, formal logical notation.

The following is a list of the categories of expression with which
we shall be concerned. In the case of each category we give the standard terminology for it, along with a simple English expression of the category concerned, and the corresponding notation of our formal language. No formal expression belongs to more than one category.

<table>
<thead>
<tr>
<th>S</th>
<th>Sentence</th>
<th>John is fat</th>
<th>$F(j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Name</td>
<td>John</td>
<td>J</td>
</tr>
<tr>
<td>$1SN$</td>
<td>One-place predicate</td>
<td>____ is fat</td>
<td>$F()$</td>
</tr>
<tr>
<td>$2SN$</td>
<td>Two-place predicate</td>
<td>____ loves ...</td>
<td>$L(,)$</td>
</tr>
<tr>
<td>$3SNN$</td>
<td>Three-place predicate</td>
<td>____ is between ... and ____</td>
<td>$B(, ,)$</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1NN$</td>
<td>One-place function</td>
<td>____'s father</td>
<td>$f()$</td>
</tr>
<tr>
<td>$2NNN$</td>
<td>Two-place function</td>
<td>____ plus ____</td>
<td>$g(,)$</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1SS$</td>
<td>One-place connective</td>
<td>it is not the case that ____</td>
<td>$\sim()$</td>
</tr>
<tr>
<td>$2SSS$</td>
<td>Two-place connective</td>
<td>____ and ____</td>
<td>$()&()$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>____ or ____</td>
<td>$()\lor()$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>____ only if ____</td>
<td>$()\rightarrow()$</td>
</tr>
<tr>
<td>$1S1SN$</td>
<td>Quantifier</td>
<td>something ____</td>
<td>$\exists()$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>everything ____</td>
<td>$\forall()$</td>
</tr>
</tbody>
</table>

In our formal language expressions of any category other than S which are as simple as possible are called *primitive*. Expressions of category N are in general called *terms* rather than names. Sentences formed by filling blanks of primitive predicates with terms are called *atomic* sentences. Connectives and quantifiers are called *logical operators*.

Expressions of our formal language can be combined to form new expressions in systematic ways which are implicit in their categorizations. For example, the formal sentence $\sim(L(f(j), m))$ could be taken as representing the English sentence 'It is not the case that John's father loves Mary'. The only method of combination which is not straightforward is that of quantification. The other methods displayed in the last example – functional application, predication and connection – should need no further explanation.

2.4 Quantifiers and bound variables. With quantification we have the problem of needing in our formal notation a method to parallel that of eliding the blanks:

Someone is fat = Someone ____ is fat

which corresponds the method of categorial interlocking:

$S = 1S1SN \quad 1SN$

So far our formal notation suggests only the following:

$\exists(F())$

in which a gap for a term is still conspicuously, and quite illegitimately, available for completion. We must somehow indicate that completing the quantifier by the predicate seals off the gap which the predicate brings with it against further possible completion by terms (and against further possible sealings by quantifiers). This we do by inserting a link between the quantifier and the predicate gap concerned:

$\exists(F())$

This, however, has the consequence that the sentence is not a linear sequence of signs. In order to restore linearity of notation we use a *bound* variable, whose sole purpose is to indicate the linkage depicted above by occurring at the ends of the link:

$\exists x F(x)$

(where we have now omitted the outer brackets).

Of course, more than one link may emanate from a quantifier:

$\exists \exists L(x, x) \quad \exists xL(x, x)$

Someone loves himself

Here the occurrences of the bound variable show which gaps are sealed off by the quantifier. Moreover, in cases of multiple quantification the occurrences of the bound variables show *which* gaps are sealed off by *which* quantifier occurrence:

$\forall \exists L(,) \quad \forall x \exists y L(x, y) \quad \text{Everyone loves someone}$

$\exists \forall L(,) \quad \exists x \forall y L(y, x) \quad \text{Someone is loved by everyone}$

$\forall \forall L(,) \quad \forall x \exists y L(y, x) \quad \text{Everyone is loved by someone}$

$\exists \exists L(,) \quad \exists x \forall y L(x, y) \quad \text{Someone loves everyone}$

Note that the alphabetical choice of bound variable is unimportant, so long as the intended pattern of links is established. In some cases it is possible to use the same variable for two quantifications:

$\forall(F() \& \exists B()) \quad \forall x (F(x) \& \exists x B(x))$
In other cases, however, different variables must be used. For example, different variables must be used in

$$\forall(F(x) \land \exists L(x,y)) \quad \forall x(F(x) \land \exists y L(y,x))$$

since if the same variable were used for both quantifications a quite different pattern of links would be established:

$$\forall(F(x) \land \exists L(x,y)) \quad \forall x(F(x) \land \exists x L(x,y))$$

In a sentence of the form

$$\exists \psi$$

the initial quantifier occurrence is said to bind the occurrences of the variable x. Moreover by placing the quantifier prefix $\exists x$ in front of the formula $\psi(x \cdot x \cdot x \cdot x)$ we bind every available occurrence of x therein. Those occurrences of x in ψ that are available for binding (i.e. which have not already been bound) are called free.

Which occurrences of variables in ψ are free and which are bound can be determined from the way in which ψ was constructed from simpler expressions. This is why we can always determine what pattern of links the bound variables establish. Our two earlier examples illustrate this. The sentence $\forall x(F(x) \land \exists y L(y,x))$ was constructed as follows:

- $L(y,x)$ each occurrence of y,x free
- $F(x)$ each occurrence of x free
- $\forall x(F(x) \land \exists y L(y,x))$ no occurrences of variables free

while the sentence $\forall x(F(x) \land \exists x L(x,y))$ was constructed as follows:

- $L(x,x)$ each occurrence of x free
- $\exists x L(x,x)$ no occurrence of x free
- $F(x)$ that occurrence of x free
- $\forall x(F(x) \land \exists x L(x,y))$ no occurrences of x free

2.5 Formulae. The internal structure of a sentence of our formal language is a by-product of its order of construction. In general each stage of construction yields a formula with certain occurrences of variables free. The sentences of the formal language are those formulae that have no occurrences of variables free.

Each stage of construction involves concatenating expressions according to fixed rules formulable from categorial considerations.

These rules constitute an inductive definition of formula with such-and-such occurrences of variables free. They may be regarded as the grammar of our formal language:

(i) Any name is a term with no free occurrences of variables.
(ii) Any variable is a term, with that occurrence of itself free.
(iii) Any n-place function sign followed by n occurrences of terms is a term whose free occurrences of variables are just those which are free in one of those occurrences of terms.
(iv) Any n-place predicate followed by n occurrences of terms is a formula whose free occurrences of variables are just those which are free in one of those occurrences of terms.
(v) If ψ is a formula then so is $\neg \psi$, whose free occurrences of variables are just those which are free in ψ.
(vi) If ψ and ϕ are formulae then so are $\phi \land \psi$, $\phi \lor \psi$ and $\phi \Rightarrow \psi$, whose free occurrences of variables are just those which are free in ψ or free in ψ.
(vii) If ϕ is a formula with x free, then $(\exists x \phi)$ and $(\forall x \phi)$ are formulae whose free occurrences of variables are just those, save of x, which are free in ϕ.
(viii) Nothing is a term or formula unless its being so follows from rules (i)–(vii).

Note that by this definition terms may contain variables. Terms that do not are called closed terms. The reason for allowing terms to contain variables is to make every ‘place for a name’ accessible to quantification. Unless we did so we would not have the sentence $\forall x L(F(x),m)$ (Everyone’s father loves Mary), to give but one example.

One must not lose sight of the fact that variables are a notational device used solely in order to indicate linkages established by quantification. Even though our definition of formula allows one to introduce a free occurrence of a variable at one stage of construction and then bind it only at a later stage, this is necessary only because we have opted for a linear notation. Quantification is still a unitary operation from the categorial point of view.

Formulae as defined above contain brackets. The order of bracketing reflects the order of construction and is important for distinguishing between formulae which involve the same logical operators but which have been constructed, using those operators, in different ways. Thus we may distinguish $(\phi \land (\phi \lor \theta))$ from $((\phi \land \phi) \lor \theta)$, and we may distinguish $(\exists x (\phi \land \phi))$ from $((\exists x \phi) \land \phi)$. It is customary to omit brackets in writing down a formula when there is no danger of confusion about how the formula was constructed.

The notation used here is sometimes called the ‘bracket plus infix’ notation since two-place operators are infixed between formulae to
obtain a new one. In so-called Polish notation dominant operators are written first. Thus the Polish version of \((\phi \& \psi)\) is \(\& \phi \psi\). In Polish notation no brackets are needed to indicate the order of construction of a formula. The examples in the last paragraph would be written respectively as \(\& \phi \lor \psi \theta\), \(\lor \& \phi \psi \theta\), \(\exists \& \phi \psi\) and \(\& \exists x \phi\). As mentioned above, all that is important is the invariant structure represented by the two notations. We know what that structure is from either the bracket plus infix notation or the Polish notation because we understand the rules for constructing formulae in each of those notations.

We may even find it useful to use a picturesque two-dimensional notation which makes the tree-like order of construction of a formula even more obvious:

Certainly these tree diagrams give a vivid sense to an operator’s being dominant in a formula: \(\&\) is dominant in the one on the left, while \(\lor\) is dominant in the one on the right. In general the displayed occurrence of a logical operator is dominant in formulae of the forms \(\neg \psi\), \(\phi \& \psi\), \(\phi \lor \psi\), \(\exists x \phi\) and \(\forall x \phi\). The displayed subformulae in each case are said to be within the scope of the occurrence of the operator concerned.

\[\begin{array}{c}
\& \\
\phi & \\
\psi & \\
\theta
\end{array}
\]

\[\begin{array}{c}
\lor \\
\phi & \\
\theta
\end{array}
\]
3.1 Atomic sentences. Now that we have an account of the structure of the sentences of our formal language we may show how the structure of a sentence contributes to its truth conditions. How does the 'form' of a sentence, once revealed, enable us to understand the conditions under which it would be true?

First we must understand the conditions under which atomic sentences are true. In general an atomic sentence has the form \[P(t_1, \ldots, t_n) \] where an n-place primitive predicate \(P \) has been completed by \(n \) occurrences of closed terms. The simplest and most obvious account is then the following. Each closed term stands for an individual, and the predicate represents a relation between individuals. If this relation holds between the individuals in question, the atomic sentence is true. If not, it is false.

Three philosophical problems are being skirted here. The first, Ramsey's, is that of explaining why the atomic sentence 'Socrates is mortal' should be regarded as having the form \(M(s) \) and being true just in case the individual Socrates (for which the name 'Socrates' stands) possesses the property of mortality (which the predicate 'is mortal' represents). Why not rather assign the sentence some logical form which shows that the property of mortality (for which the phrase 'is mortal' stands) possesses the property of Socratising (which the word 'Socrates' represents)?

The second problem is the problem of universals. We have spoken of names standing for individuals but of predicates representing properties and relations. Does the latter form of words signify a conception of properties and relations somehow existing already along with individuals and inhering in them? Or can we employ this form of words while maintaining that the only existents are individuals, and that they can have properties and enter into relations with one another without there being such 'things' as properties and relations that are enjoyed or entered into?

The third problem is the problem of non-denoting terms. If our language allows the formation of terms such as 'the square root of Jupiter' or 'the empty set's wife', are we to regard these as denoting any objects? Our present answer is simple and evasive. We design our language so that this problem never arises. We secure every name a denotation, and we ensure that every function is 'everywhere defined'. Thus every term denotes, and the term 'the problem of non-denoting terms' does not. In section 7.10, however, we consider a less evasive solution to the problem.

3.2 Connected sentences. Suppose we settle for this simple account of the truth conditions of atomic sentences. The truth conditions of complex sentences with connectives dominant are as follows:

\[\sim \phi \text{ is true if and only if } \phi \text{ is not true} \]
\[(\phi \land \psi) \text{ is true if and only if } \psi \text{ is true and } \phi \text{ is true} \]
\[(\phi \lor \psi) \text{ is true if and only if } \psi \text{ is true or } \phi \text{ is true} \]
\[(\phi \rightarrow \psi) \text{ is true if and only if } \psi \text{ is true only if } \phi \text{ is true} \]

Here it is assumed, of course, that one has a clear understanding of what is meant by 'not', 'and', 'or' and 'only if'. In the absence of such a clear understanding the truth conditions specified on the right are not clear. It is customary, in the assumed absence of a clear and common understanding of the quoted English connectives, to resort to truth tables in order to show exactly how the truth value of a sentence with a connective dominant depends on the truth values of the connected sentences:

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(\sim \phi)</th>
<th>(\psi)</th>
<th>(\sim \psi)</th>
<th>(\psi \land \phi)</th>
<th>(\psi \lor \phi)</th>
<th>(\sim \psi \land \phi)</th>
<th>(\sim \psi \lor \phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

The truth table shows that we are imposing on \(\psi \lor \phi \) the meaning conveyed by the English form of words '\(\psi \) or \(\phi \) (or perhaps both)' rather than '\(\phi \) or \(\psi \) (but not both)'.

The truth table for \(\rightarrow \) has to be constructed with some explanation. Consider the sentence

(1) Every \(F \) is a \(G \).

This is equivalent to

(2) Everything is such that if it is an \(F \) then it is a \(G \),

which can be represented in our logical notation as

(3) \(\forall x (F(x) \rightarrow G(x)) \)

Now it is the meaning of 'if ... then ...' according to which (1) may be paraphrased as (2) that the truth table for \(\rightarrow \) is to confer on \(\rightarrow \). In order that (2) be true, the predicate 'if ... is an \(F \) then ... is a \(G \)' must be true of every individual. Thus it must be true of non-\(F \)-s (if there are any) since the \(G \)-ness of non-\(F \)-s is irrelevant to the truth of (2). The existence of even one \(F \) that is not a \(G \) would falsify (2), and an \(F \) that is a \(G \) cannot count against the truth of (2). Thus the truth table for \(\rightarrow \) is
Note that our explanation of the truth table for \Rightarrow does not constitute a justification for translating 'If ... then ...' into logical notation as \Rightarrow in all contexts. Indeed, such translation is inadequate in many kinds of context: as, for example, in a counterfactual construction such as

If the butler didn't do it then the gardener did.

Here the falsity of the antecedent would in no way render the claim true.

3.3 Quantified sentences. Finally we have to consider quantification. How do we explain the truth conditions of a sentence with a quantifier dominant, in terms of the truth conditions of the part within the scope of the quantifier?

Consider a simple example: $\exists x F(x)$, or its ur-version $\exists F()$, with F primitive. $\exists F()$ is true if and only if there is at least one individual of which the predicate $F()$ is true.

We have introduced the relational notion of a predicate's being true of an individual. Let us speak conversely of an individual's satisfying a predicate. In our example $\exists F()$ we might think of the link, with the quantifier \exists excised, as latching onto some individual α that satisfies the predicate:

$$
\begin{array}{c}
\exists F() \\
\alpha
\end{array}
$$

In a slightly more complicated case, such as $\exists L(,)$, when we excise the quantifier we produce the picture,

$$
\begin{array}{c}
\exists L(,) \\
\alpha
\end{array}
$$

of the links latching onto some individual α from two different gaps in the predicate. For α to satisfy $L(,)$ at those two gaps it would have to bear to itself the relation that the predicate represents.

The same explanation of the truth conditions of sentences of the form $\exists L(,)$ is available when ψ is complex. For example, with

$$
\exists (F() \wedge G())
$$

The truth condition for $\exists (F() \wedge G())$ is that there be at least one individual α onto which the links could latch so that the depicted assignment of α to the gaps in the complex predicate $F() \wedge G()$ satisfies it. This in turn is the condition that there be at least one individual α such that the assignment of α to the gap in $F()$ satisfies $F()$ and the assignment of α to the gap in $G()$ satisfies $G()$.

Notice that we have advanced from saying

$$
\alpha \text{ satisfies } \psi \text{ when assigned to its gaps}
$$

to saying

$$
\text{the assignment of } \alpha \text{ to the gaps in } \psi \text{ satisfies it}
$$

Now there is a natural way of locating the new gaps in a predicate upon excision of a dominant quantifier. They are the gaps that, in our linear notation, are occupied by occurrences of the variable that are freed by the removal of the quantifier prefix. The formula $\exists \psi(x \cdot x \cdot x \cdot)$ with the indicated occurrences of x bound by the dominant occurrence of $\exists x$ becomes, upon removal of $\exists x$, the formula $\psi(x \cdot x \cdot x \cdot)$ in which the indicated occurrences of x are now free. We may now advance to saying

$$
\text{the assignment of } \alpha \text{ to the variable } x \text{ satisfies } \psi(x \cdot x \cdot x \cdot)
$$

or, briefly,

$$
(x/\alpha) \text{ satisfies } \psi(x \cdot x \cdot x \cdot)
$$

Our account is still not quite general enough. For a predicate might have been exposed by removing more than one occurrence of quantifiers. Consider a simple multiple quantification: $\exists x \forall y L(x,y)$. This is true just in case there is an individual α such that (x/α) satisfies $\forall y L(x,y)$. But what is it for (x/α) to satisfy $\forall y L(x,y)$? Simply that α should bear to every individual the relation represented by L: i.e., that for every individual β, $(x/\alpha)(y/\beta)$ satisfies $L(x,y)$. So $\exists x \forall y L(x,y)$ is true just in case there is an individual α such that for every individual β, α bears to β the relation represented by L.

3.4 Satisfaction and truth: Tarski’s adequacy condition. An assignment of individuals to variables may be thought of as temporarily making the variables concerned behave like names of the respective
individuals assigned to them. We shall call the denotation of any name a (the individual for which a stands) simply a. Thus a denotes a irrespective of any assignment of individuals to variables which may be under consideration. We shall call the operation on individuals represented by any function sign f simply f. The denotation of a variable x relative to any assignment s which deals with x is obviously $s(x)$. We may complete an inductive definition of $s[t]$ – the denotation of a term t relative to any assignment s which deals with all the variables in t – as follows:

$$s[a] = a; \text{ and } s[f(t_1, \ldots, t_n)] = f(s[t_1], \ldots, s[t_n])$$

The device of underlining symbols of our formal language is generally useful as a succinct indication of translation into the metalanguage, the language in which we are stating satisfaction and truth conditions. Our metalanguage is presently a melange of English and informal mathematical jargon. We shall now agree to make it a little more austere. Instead of writing the English phrases

it is not the case that ..., and, or, only if, there is at least one individual α such that ..., for every individual α

we shall write respectively

$$\sim \alpha, \lor \alpha, \exists \alpha, \forall \alpha$$

Likewise instead of writing atomic sentences like

α stands to β in the relation represented by L

we shall write

$$L(\alpha, \beta)$$

In our discussion above we moved from talk of truth conditions of formulae, which have no free variables, to talk of satisfaction conditions of formulae. For uniformity we should re-state the truth conditions for sentences with connectives dominant as satisfaction conditions for formulae with connectives dominant. As a limiting case we may regard the truth of a sentence (with no free variables) as consisting in its satisfaction by the null assignment \emptyset.

An assignment may be extended or modified to deal with a variable newly freed by the removal of a quantifier prefix. If s is an assignment then $s(x/\alpha)$ will be the assignment which results from extending or modifying s so that it assigns α to x. Note that $s(x/\alpha)[x]$ is obviously α, while $s(x/\alpha)(x/\beta)[x]$ is β. In general we look to the last extension or modification with respect to x to find what the assignment assigns to x.

We may talk of an assignment satisfying a formula only when the assignment deals with all the free variables of the formula. Our analysis of satisfaction conditions proceeds by unravelling formulae according to their structure and then invoking the satisfaction conditions of atomic formulae. On the assumption that s deals with all the free variables of the formula concerned, the precise inductive definition of satisfaction is as follows:

(i) s satisfies $P(t_1, \ldots, t_n)$ iff $P(s[t_1], \ldots, s[t_n])$

(ii) s satisfies $\neg \phi$ iff $\sim s$ satisfies ϕ

(iii) s satisfies $\phi \land \psi$ iff s satisfies ϕ and s satisfies ψ

(iv) s satisfies $\phi \lor \psi$ iff s satisfies ϕ or s satisfies ψ

(v) s satisfies $\phi \Rightarrow \psi$ iff s satisfies ϕ or s satisfies ψ

(vi) s satisfies $\exists \alpha \phi$ iff $\exists \alpha \ s(x/\alpha)$ satisfies ϕ

(vii) s satisfies $\forall \alpha \phi$ iff $\forall \alpha \ s(x/\alpha)$ satisfies ϕ

Finally, a sentence ψ is true iff \emptyset satisfies ψ.

Let us now consider some consequences of these definitions in the case of two of our examples above, $\exists x(F(x) \land G(x))$ and $\exists x \forall y L(x,y)$. Each link in the following chains of equivalences is justified by one of the clauses above, or by an obvious identity.

$$\exists x(F(x) \land G(x))$$

 iff \emptyset satisfies $\exists x(F(x) \land G(x))$

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } F(x) \land G(x)$ by (vi)

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } F(x)$ by (vii)

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } G(x)$ by (iii)

 iff $\exists x \bigl(L(x/\alpha) \land G(x)\bigr)$ by (i)

 Thus we have proved $\exists x(F(x) \land G(x))$ is true iff $\exists x \bigl(L(x/\alpha) \land G(x)\bigr)$.

$$\exists x \forall y L(x,y)$$

 iff \emptyset satisfies $\exists x \forall y L(x,y)$

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } \forall y L(x,y)$ by (vi)

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } L(x,y)$ by (vii)

 iff $\exists x \emptyset (x/\alpha) \text{ satisfies } L(x,y)$ by (i)

 Thus we have proved $\exists x \forall y L(x,y)$ is true iff $\exists x \bigl(L(x/\alpha)\bigr)$.

 It is easily established by induction on the complexity of formulae that we can prove

$$s \text{ satisfies } \phi(x_1, \ldots, x_n) \text{ iff } \phi(s[x_1], \ldots, s[x_n])$$

where ϕ is a verbatim translation of the formula ϕ into the metalanguage. In particular we can prove for any sentence ψ that
$$\varphi$$ is true iff $$\varphi$$

as illustrated twice above. Our definition of truth – or, more precisely, the theory of truth to which it belongs – therefore satisfies what is known as Tarski's adequacy condition. This is the condition that every instance of the last schema should be provable in the truth theory.

We have given our account of the truth conditions of sentences of our formal language by using a metalinguage containing translations of these sentences. Only if we have a thorough understanding of the metalanguage can we claim to have characterized truth conditions of sentences of the formal language. The formal language is often called the object language, since it is presently the object of our study.

We have used expressions like

$$\exists x F(x)$$

as metalinguistic designations of formulae of the object language. $$\exists x F(x)$$ is the result of concatenating $$\exists$$, $$x$$, $$F$$, (, $$x$$, and) in that order. Precisely what entities these are does not matter: they might even turn out to be '∃', 'x', 'F', '(', 'x' and ')' respectively. Metalinguistically we have used concatenation of designations to represent concatenation of things designated. These remarks prepare the stage for a precise statement of Tarski's adequacy condition on any theory of truth $$T$$:

Every instance of the metalinguistic schema

$$\varphi$$ is true iff $$\varphi$$

should be provable in $$T$$, where an instance is obtained by replacing '$$\varphi$$' by a metalinguistic designation of a sentence of the object language, and replacing '$$\varphi$$' by a translation of that sentence into the metalanguage.

The theory of truth given here is sometimes called the pure theory because it makes no mention of the situations in which sentences are true or false. It is therefore not well tailored for the definition of logical consequence:

$$\Delta \vDash \varphi$$ iff for every situation $$\mathcal{W}$$ if all the members of $$\Delta$$ are true-in-$$\mathcal{W}$$ then $$\varphi$$ is true-in-$$\mathcal{W}$$ also

which involves the relativised notion of truth-in-a-situation.

As remarked in Chapter 1, in the mathematical literature situations are usually called models, and we shall henceforth adopt this terminology. We shall now characterize models and relativize the definitions of satisfaction and truth.

3.5 Models. A model $$\mathcal{M} = (\mathcal{A}, \ldots)$$ consists of a domain $$\mathcal{A}$$ of individuals and an assignment $$_$$ which assigns to each distinguished name a some member $$\alpha$$ of $$\mathcal{A}$$; to each $$n$$-place function sign $$f$$ an $$n$$-place operation $$f$$ everywhere defined in $$\mathcal{A}$$; and to each $$n$$-place predicate $$P$$ a set $$P$$ of $$n$$-tuples of members of $$\mathcal{A}$$. The reason for distinguishing certain names is that subsequently, in the construction of proofs, we shall be employing undistinguished names as names for 'arbitrary' objects considered in the course of a proof (a method of reasoning common in mathematics). In subsequent discussion we shall implicitly assume that the formulae and sentences involved contain no undistinguished names when we consider conditions for their satisfaction and truth in a model.

Suppose $$s$$ assigns members of $$\mathcal{A}$$ to certain variables. On the assumption that $$s$$ deals with all the variables in a term $$t$$, we define $$s_\mathcal{M}[t]$$, the denotation of $$t$$ in $$\mathcal{M}$$ relative to $$s$$, inductively as follows:

$$s_\mathcal{M}[x] = s(x)$$

$$s_\mathcal{M}[\alpha] = \alpha$$

$$s_\mathcal{M}[\alpha_1(t_1, \ldots, t_n)] = f(s_\mathcal{M}[t_1], \ldots, s_\mathcal{M}[t_n])$$

Instead of $$\langle \alpha_1, \ldots, \alpha_n \rangle \in P$$ we shall write $$P(\alpha_1, \ldots, \alpha_n)$$. Instead of $$s$$ satisfies $$\varphi$$ in $$\mathcal{M}$$

we shall write $$\mathcal{M} \vDash \varphi[s]$$. (The use of $$\vDash$$ in this way must not be confused with its use to represent logical consequence.) Instead of $$\therefore$$

there is a member $$\alpha$$ of $$\mathcal{A}$$ such that

we shall write $$\exists \alpha \in \mathcal{A}$$, and likewise for the universal quantifier.

The model-relative definition of satisfaction is given by the following clauses:

(i) $$\mathcal{M} \vDash P(t_1, \ldots, t_n)[s]$$ iff $$P(s_\mathcal{M}[t_1], \ldots, s_\mathcal{M}[t_n])$$

(ii) $$\mathcal{M} \vDash \neg \varphi[s]$$ iff $$\neg \mathcal{M} \vDash \varphi[s]$$

(iii) $$\mathcal{M} \vDash \varphi \land \psi[s]$$ iff $$\mathcal{M} \vDash \varphi[s] \land \mathcal{M} \vDash \psi[s]$$

(iv) $$\mathcal{M} \vDash \varphi \lor \psi[s]$$ iff $$\mathcal{M} \vDash \varphi[s] \lor \mathcal{M} \vDash \psi[s]$$

(v) $$\mathcal{M} \vDash \varphi \rightarrow \psi[s]$$ iff $$\mathcal{M} \vDash \varphi[s] \rightarrow \mathcal{M} \vDash \psi[s]$$

(vi) $$\mathcal{M} \vDash 3x \varphi[x]$$ iff $$\exists \alpha \in \mathcal{A} \mathcal{M} \vDash \varphi[x/\alpha]$$

(vii) $$\mathcal{M} \vDash 3x \varphi[x]$$ iff $$\forall x \in \mathcal{A} \mathcal{M} \vDash \varphi[x/\alpha]$$

Finally a sentence $$\varphi$$ is true in $$\mathcal{M}$$ iff $$\mathcal{M} \vDash \varphi[0]$$.

It is easily seen that this definition yields all instances of the adequacy schema where each instance now has its right-hand side a model relative translation of the designated sentence. Thus our earlier examples would become
3.6 Finite and infinite models. If the domain A is infinite it is not in general possible to determine in a mechanical way whether a sentence is true in A. This is because clauses (vi) and (vii) for the quantifiers require possibly infinite searches through the domain. So although it might (in a classical sense) be mathematically well-determined whether a given sentence φ is true or false in A, it might nevertheless be impossible for us to discover by routine application of the definitional clauses above, whether φ was true or false. In such a case, where A is an infinite model of some interest and φ a sentence whose truth or falsity in that model has to be determined, we might have to resort to proving φ from other sentences which are 'obviously' true in A. An example is the case where A is the model consisting of the counting numbers (natural numbers) $0, 1, 2, \ldots$ with the usual additive and multiplicative operations. This model is usually called \mathbb{N}. As mentioned in 1.4, no-one has yet determined the truth or falsity in \mathbb{N} of the sentence

$$\varphi: \text{Every even number greater than two is the sum of two prime numbers.}$$

To do so 'by inspection' might require an infinite search through the even numbers. We might one day discover an even number greater than two which is not a sum of any two preceding primes, and this would enable us to say that φ was false in \mathbb{N}. We would, of course, have had to 'verify' that only preceding primes need be inspected. No such counterexample, however, has yet been discovered. A mathematician who believes φ is true in \mathbb{N}, and who wishes to establish this conclusively, must resort to proving φ from axioms which are 'obviously' true in \mathbb{N}. No such proof has yet been discovered.

In contrast to the infinite case, the truth or falsity of φ in A can always be determined when A is finite. Any sentence φ contains only finitely many extra-logical expressions. For each such expression E there is a finite specification of E in the model. So if the domain A is finite we need inspect only a finite amount of information in order to determine whether φ is true or false.

Consider, for example, the sentence $\forall x \exists y Lxy$ and the model A whose domain A consists of just two individuals α and β and in which L is specified as $\langle \alpha, \beta \rangle, \langle \beta, \alpha \rangle$. The truth or falsity of $\forall x \exists y Lxy$ in A is determined by a proof or refutation of the metastatement

$$\forall x \exists y Lxy \text{ is true in } A$$

within the truth theory. In fact, we can prove this statement (rather than refute it) from the basic information about A (expressed in the metalanguage) as follows:

$$\forall x \exists y Lxy \equiv L(\alpha, \beta)$$

$$\frac{L(\alpha, \beta) \vdash y \exists x Lx(\alpha)}{\forall x \exists y Lx(\alpha)}$$

The step marked (\times) in this proof highlights the difference between the finite and infinite case. For, consider once more the infinite model \mathbb{N}. In 'proving' within our truth theory a conclusion of the form

$$\forall x \exists y Lx(\alpha)$$

in a manner analogous to that above we would apply the infinitary inference

$$\frac{\vdots}{\forall x \exists y Lx(\alpha)}$$

which involves infinitely many subproofs and so would make the proof infinite.

As mentioned earlier, in order to establish universal statements about the counting numbers, mathematicians must resort to certain axiomatic principles. Among these is the principle of mathematical induction. According to this principle, if you have proved $\psi(0)$ and, on the inductive hypothesis $\psi(n)$ (for 'arbitrary n'), you have proved $\psi(n+1)$ then you may conclude $\forall x \psi(x)$ independently of the inductive hypothesis. Schematically, we may write this as

$$\frac{\psi(0) \quad \psi(n+1)}{\forall x \psi(x)}$$

The idea behind this principle is that the proof of $\psi(n+1)$ from $\psi(n)$ can be repeated ad infinitum to produce infinitely many subconclusions from which the universal statement follows:
Then we specify all the atomic predication and their negations:

\[F(a) : \sim F(b) \]

Finally we form the conjunction of all these sentences and quantify existentially with respect to \(b \) (since in the model to be described \(\beta \) is nameless):

\[\exists y (\sim a = y \land \forall x (x = a \lor x = y) \land f(a) = y \land f(b) = y \land F(a) \land \sim F(y)) \]

This sentence obviously describes the model categorically. The general method for finding a sentence which categorically describes a finite model of finitely many extra-logical expressions is implicit in our example.

3.8 Counterexamples to invalid arguments. The reader will recall that an argument is invalid if and only if there is some model in which all the premises are true but the conclusion is false. To invalidate an argument with finitely many premises we need only find a model for the conjunction of all the premises with the negation of the conclusion.

A well-known invalid argument is that of 'quantifier switch':

\[\forall x \exists y \forall x \phi xy \]

\[\exists y \forall x \phi xy \]

The following simple model, in which arrows represent the relation expressed by \(\phi \), serves as a counterexample, making the premise true but the conclusion false:

\[\rightarrow \]

Another model which invalidates the quantifier switch argument is that consisting of the positive and negative integers, with \(\phi \) interpreted as 'is strictly less than'. Every integer is strictly less than some integer, but there is no integer such that every integer (including itself) is strictly less than it.

Consider the English sentences:

1. No-one has fooled everyone.
2. No-one has been fooled by everyone.
3. Someone has fooled someone.
4. Everyone has either fooled someone or been fooled by someone.
5. Everyone has fooled himself only if he has fooled someone else.
6. Everyone has fooled himself only if he has been fooled by someone else.
Everyone who has fooled someone has fooled himself.
Everyone has fooled himself only if everyone has fooled someone else.
Everyone has fooled himself only if everyone has been fooled by someone else.
Everyone who has been fooled by someone has fooled himself.
Everyone has both fooled someone and been fooled by him.

The translations of (1)-(11) into logical notation are as follows:

1. \(\neg \exists x \forall y Fxy \)
2. \(\neg \exists x \forall y Fyx \)
3. \(\exists x \exists y Fxy \)
4. \(\forall x (\exists y Fxy \lor \exists y Fyx) \)
5. \(\forall x (Fxx \supset \exists y (\neg y = x \& Fxy)) \)
6. \(\forall x (Fxx \supset \exists y (\neg y = x \& Fyx)) \)
7. \(\forall x (\exists y Fxy \supset Fxx) \)
8. \(\forall x Fxx \supset \forall x \exists y (\neg y = x \& Fxy) \)
9. \(\forall x Fxx \supset \forall x \exists y (\neg y = x \& Fyx) \)
10. \(\forall x (\exists y Fyx \supset Fxx) \)
11. \(\forall x \exists y (Fxy \land Fyx) \)

For each \(i \) between 1 and 9 the premisses (1)-(i) fail logically to imply conclusion (11). Counterexamples are as follows, with arrows representing \(F \):

- (1) and (2) true, but (11) false.
- (1), (2) and (3) true, but (11) false.
- (1)-(6) true, but (11) false.
- (1)-(9) true, but (11) false.

Strictly speaking only the last counterexample is needed, but we have given the other three as well because of their greater simplicity.

As soon as we add (10) to the premisses the argument becomes valid. In fact, premisses (4), (7) and (10) logically imply the conclusion (11). In the following chapter on proofs we shall return to this example, to show how to perfect the argument (4), (7), (10)/(11) by means of a proof. Having a proof of the argument is the only way to establish its validity, for it is impossible to survey all possible models of (4), (7), and (10) to check that in each of them (11) is true.

The last four counterexamples were finite. We saw also that the quantifier switch argument, although it possessed an infinite counterexample, had also a finite one. Not every invalid argument, however, has a finite counterexample. For, from the premisses

\[
\exists x \exists y x = y
\]
\[
\forall x \neg x < x
\]
\[
\forall x \forall y \forall z ((x < y \& y < z) \supset x < z)
\]
\[
\forall x \forall y \forall z (x < y \lor y < x \lor x = y)
\]

which ensure that \(< \) represents a non-trivial strict ordering, the conclusion

\[
\neg \forall x \forall y (x < y \supset \exists z (x < z \& z < y))
\]

which says that the ordering is not dense, does not follow. This is because some non-trivial strict orderings are dense (e.g. the ordering of the rational numbers). All such orderings, however, are infinite. Thus there is no finite counterexample to this invalid argument.

If, however, the formal language contained only names and one-place predicates and no function signs then any sentence that had a model would have a finite model. Thus an invalid argument from finitely many premisses would have a finite counterexample. This will be proved in Chapter 6.

Other model-theoretic results to be proved in Chapter 6 are the Löwenheim-Skolem theorem:

If a countable set of sentences has an infinite model then it has a model of every infinite cardinality

and the Compactness theorem:

If every finite subset of a set of sentences has a model, then it too has a model.

Both these theorems have interesting consequences for the foundations of mathematics.

3.9 Game theoretic semantics. Consider a formal language with \(\neg, \&, \lor, \exists \) and \(\forall \) as its logical operators. Suppose I assert a sentence \(\psi \), understood as an assertion about a well-defined model \(M \). Suppose you challenge my assertion. How might I convince you or you convince me?

(i) If \(\psi \) is atomic then of course we look to the model to see who is correct. If \(\psi \) is true, I win. If not, you win.

(ii) If \(\psi \) is \(\neg \phi \) then you would undertake to assert \(\phi \) and I would undertake to challenge \(\phi \). Thus our roles would be exchanged.
(iii) If ψ is $\phi \lor \theta$ then I would have to assert ϕ or assert θ. Whichever I asserted you would have to challenge.
(iv) If ψ is $\phi \land \theta$ then you would have to challenge ϕ or challenge θ. Whichever you challenge I would have to assert.
(v) If ψ is $\exists x \phi$ then I would have to choose a member α of the domain as a verifying instance. So I would be asserting $\phi(x)$ where x would now be understood as a name of α. You would have to challenge $\phi(x)$ on the same understanding.
(vi) If ψ is $\forall x \phi$ then you would have to choose a member α of the domain as a falsifying instance. So you would be challenging $\phi(x)$ where x would now be understood as a name of α. I would have to assert $\phi(x)$ on the same understanding.

As we make our choices according to these rules, we successively reduce the complexity of the sentence whose truth value is contested. After finitely many moves an atomic sentence will be reached and one of us will win.

Now it is important to distinguish between happening to win a particular play of this ‘game’, and having a winning strategy. A winning strategy is a game plan that ensures a win regardless of the moves one’s opponent might make. For example, suppose ϕ is true but θ is false. Then I have a winning strategy on $\phi \lor \theta$ — namely to choose ϕ and follow my winning strategy on it. But suppose I misexecute my winning strategy by mistakenly choosing θ. Then you would possess a winning strategy. If you executed it properly, you would win. So you might, as a result of my mistake, win a particular play without having had a winning strategy at the outset. Thus the way to ‘convince’ one’s opponent is to win in many plays of the game, and never to lose. This will provide him with inductive evidence that you possess a winning strategy.

At each state of play exactly one of us has a winning strategy. If the possessor of a winning strategy misexecutes it then he ceases to be, and his opponent becomes, the possessor of a winning strategy. To execute a winning strategy properly is to retain one’s position as the possessor of a winning strategy. At the final state of play — where an atomic formula has been reached — the possessor of a winning strategy is, degenerately, he who wins.

Thus each state of play is characterized by the following three components:

(i) a role assignment R, where $R(T)$ is the person who occupies role T at that state, and $R(F)$ is the person who occupies role F;
(ii) a formula ψ with respect to which play is to continue; and
(iii) an assignment s of individuals from the domain of \forall to the free variables in ψ.

Play takes place against the background of the model \mathcal{M}. At each state of play it is determined which of us has a winning strategy. Our discussion shows that $P(R,\psi, s)$ — the possessor of a winning strategy at state of play (R, ψ, s) — may be defined inductively as follows:

Let \bar{R} be the reversal of R, so $\bar{R}(T) = R(F)$ and $\bar{R}(F) = R(T)$. Then

(i) $P(R, \psi, s) = R(T)$ iff $\mathcal{M} \vDash \psi[t]$, for atomic ψ
(ii) $P(R, \neg \psi, s) = R(T)$ iff $P(\bar{R}, \psi, s) = R(F)$
(iii) $P(R, \psi \lor \theta, s) = R(T)$ iff either $P(R, \psi, s) = R(T)$ or $P(R, \theta, s) = R(T)$
(iv) $P(R, \psi \land \theta, s) = R(F)$ iff either $P(R, \psi, s) = R(F)$ or $P(R, \theta, s) = R(F)$
(v) $P(R, \exists x \psi, s) = R(T)$ iff $\exists \alpha \in A \ P(R, \psi, (x/\alpha)) = R(T)$
(vi) $P(R, \forall x \psi, s) = R(F)$ iff $\forall \alpha \in A \ P(R, \psi, (x/\alpha)) = R(F)$

It follows immediately by induction on the complexity of ψ that

$P(R, \psi, s) = R(T)$ iff $\mathcal{M} \vDash \psi[s]$

Thus a sentence ψ is true in \mathcal{M} if and only if he who starts as player T in the ‘language game’ on ψ has a winning strategy.

Just as in finite models the truth value of ϕ could be mechanically computed, so also against the background of a finite model a winning strategy in the game on ψ can be mechanically devised and executed. In principle it would be a routine matter to choose subformulas and individuals correctly in the course of play. Against the background of an infinite model, however, such as the counting numbers, the sense in which one might ‘have’ a winning strategy might be somewhat tenuous. In an ideal mathematical sense the strategy might exist without its ‘possessor’ being in a position knowingly to execute it. This difference between the finite and the infinite case is a ground of disagreement between classical and intuitionistic mathematicians.
CHAPTER 4

Form and structure of proofs

4.1
Explanation and motivation of rules of inference p.40

4.2
Rules of inference as inductive clauses in a definition of proof p.49

4.3
The rules of section 1 construed in the manner of section 2 p.52

4.4
Remarks on discharging assumptions p.56

4.5
Intuitionistic and classical logic p.57

4.6
Some simple proofs – mimicking truth tables, and dualities p.59

4.7
Expressive completeness and interderivability of rules p.61

4.8
Reasons for restrictions on quantifier rules p.64

4.9
Substitutions in proofs p.65

4.10
Reduction procedures p.69

4.11
Soundness of classical logic p.71

4.12
Harmony and containment p.74

4.13
Identity and extensionality p.77

4.14
Some simple proofs p.81
4.1 Explanation and motivation of rules of inference. In this section we shall examine in detail some very simple arguments. We shall fill in all the steps which could possibly be required in order to convince one of their validity. We shall then show how to transcribe the perfected arguments into our logical notation for proofs. This process parallels that of transcribing disambiguated English sentences into formulae.

Some of the arguments may appear so obviously valid that no further perfection or formal representation by means of proofs is required. We shall nevertheless carry out these operations fully, in order comprehensively to illustrate every aspect of the proof system.

To begin we shall state and name certain rules of immediate inference which are so obviously valid and whose application is so straightforward that it is unnecessary to introduce the reader to them by means of their applications in particular examples.

Rule of Contradiction, or ~-Elimination
From \(\varphi \) and \(\neg \varphi \) we may immediately infer 'Contradiction!' for which we use the symbol \(* \):

\[
\begin{array}{c}
\varphi \\
\neg \varphi \\
*
\end{array}
\]

Rule of \(\& \)-Introduction
From \(\varphi \) and \(\psi \) we may immediately infer \(\varphi \& \psi \):

\[
\begin{array}{c}
\varphi \\
\psi \\
\varphi \& \psi
\end{array}
\]

Rule of \(\& \)-Elimination
From \(\varphi \& \psi \) we may immediately infer \(\varphi \), likewise \(\psi \):

\[
\begin{array}{c}
\varphi \& \psi \\
\varphi \\
\psi
\end{array}
\]

Rule of \(\lor \)-Introduction
From \(\varphi \) we may immediately infer \(\varphi \lor \psi \); likewise from \(\psi \):

\[
\begin{array}{c}
\varphi \\
\varphi \lor \psi \\
\psi \lor \psi
\end{array}
\]

Rule of \(\rightarrow \)-Elimination, or Modus Ponens
From \(\varphi \) and \(\varphi \rightarrow \psi \) we may immediately infer \(\psi \):

\[
\begin{array}{c}
\varphi \\
\varphi \rightarrow \psi \\
\psi
\end{array}
\]

Rule of \(\exists \)-Introduction
From \(\varphi(t) \) we may immediately infer \(\exists \varphi(x) \):

\[
\begin{array}{c}
\varphi(t) \\
\exists \varphi(x)
\end{array}
\]

In applying this rule one need not replace every occurrence of the term \(t \) in the sentence \(\varphi(t) \) by an occurrence of the variable \(x \). Thus from \(L(t, L) \) one may infer any one of \(\exists x L(x, x) \), \(\exists x L(t, x) \) or \(\exists x L(x, t) \). One must also ensure that in \(\varphi(t) \) no occurrence of \(t \) which is to be replaced by \(x \) occurs within the scope of any quantifier binding \(x \). If necessary, choose a new variable. Thus from \(\forall x L(t, x) \) one would not infer \(\exists x \forall x L(x, x) \) but rather \(\exists y \forall x L(y, x) \).

Rule of \(\forall \)-Elimination
From \(\forall \varphi(x) \) we may immediately infer \(\varphi(t) \):

\[
\begin{array}{c}
\forall \varphi(x) \\
\varphi(t)
\end{array}
\]

In applying this rule one replaces every free occurrence of \(x \) in \(\varphi(x) \) by \(t \).

In order to motivate the rules whose formal statement is less easy to understand let us consider some very simple arguments:

(1) All \(F \)'s are \(G \)'s
All \(G \)'s are \(H \)'s
All \(F \)'s are \(H \)'

Translated into logical notation this argument becomes

\[
\begin{array}{c}
\forall x (Fx \rightarrow Gx) \\
\forall x (Gx \rightarrow Hx) \\
\forall x (Fx \rightarrow Hx)
\end{array}
\]

An informal proof would run as follows:

Let \(a \) be an arbitrary object.
Suppose \(a \) is an \(F \).
Since all \(F \)'s are \(G \)'s, \(a \) is a \(G \).
Since all \(G \)'s are \(H \)'s, \(a \) is an \(H \).
So if \(a \) is an \(F \) then \(a \) is an \(H \).
But \(a \) was arbitrary.
Thus all \(F \)'s are \(H \)'

In logical notation the pattern of argument, with extra details filled in, is
At the inference marked with the lower (1) we discharged the assumption \(Fa \), as indicated by the corresponding upper (1). The assumption \(Fa \) had been assumed only for the sake of argument to establish \(Ha \). By making the dependence of \(Ha \) on \(Fa \) explicit in \(Fa \models Ha \) the latter no longer itself depends on \(Fa \). The rule being applied here is the Rule of \(\rightarrow \)-Introduction, or Conditional Proof.

Given a proof of \(\varphi \) from \(\psi \) and certain other premises, we may immediately infer \(\varphi \models \psi \). This conclusion does not depend on \(\varphi \), but only on the other premises:

\[
\begin{array}{c}
\vdots \\
\varphi \\
\vdots \\
\psi \\
\varphi \models \psi
\end{array}
\]

In applying this rule there does not have to be an assumption of the form \(\varphi \) on which \(\psi \) depends; if there is, however, it may be discharged.

The final step of the proof above was an application of the Rule of \(\forall \)-Introduction.

Given a proof of \(\varphi(a) \) where the name \(a \) does not occur in any premiss on which \(\varphi(a) \) depends, we may immediately infer \(\forall x \varphi(x) \):

\[
\begin{array}{c}
\vdots \\
\varphi(a) \\
\vdots \\
\varphi(x) \\
\forall x \varphi(x)
\end{array}
\]

In applying this rule we replace every occurrence of \(a \) in \(\varphi(a) \) by \(x \). The variable \(x \) must not be bound by any quantifier in \(\varphi(a) \) that has \(a \) within its scope. Thus from \(3xL(a,x) \) one would not infer \(\forall x 3xL(x,x) \) but rather \(\forall y 3xL(y,x) \).

The final step of the informal argument was justified by noting that \(a \) was 'arbitrary'. The proof-theoretic condition for \(a \)'s being 'arbitrary' is that \(a \) occurs in no premiss on which \(\varphi(a) \) depends. \(a \) is 'arbitrary' in any argument by whose final step any assumption about \(a \) has been discharged. If \(a \) does not occur in any premiss on which \(\varphi(a) \) depends then by appropriate substitutions of any given term \(i \) we can obtain a proof of \(\varphi(i) \). It is for this reason that we are justified in concluding \(\forall x \varphi(x) \). These observations will be justified in more detail below.

We can draw an instructive analogy between \(\forall \) and \(\& \). Suppose the domain consists of just two individuals named 0 and 1. Then \(\forall x \varphi(x) \) is equivalent to \(\varphi(0) \& \varphi(1) \). Now suppose we have a proof of \(\varphi(a) \) for 'arbitrary' \(a \). Substituting 0 for \(a \) in an appropriate way we shall obtain a proof of \(\varphi(0) \). Likewise we may obtain a proof of \(\varphi(1) \). We then have the analogy:

\[
\begin{array}{c|c|c}
\vdots & a/0 & a/1 \\
\varphi(a) & \varphi(0) & \varphi(1) \\
\forall x \varphi(x) & \varphi(0) \& \varphi(1)
\end{array}
\]

The analogy obviously extends, by multiple \(\& \)-introductions, to the case where the domain consists of any finite number of named individuals.

Now consider a second simple argument:

(2) All \(F \)'s are \(G \)'s

All non-\(G \)'s are non-\(F \)'s

Translated into logical notation this argument becomes

\[
\begin{array}{c}
\forall x (Fx \rightarrow Gx) \\
\forall x (\neg Gx \rightarrow \neg Fx)
\end{array}
\]

An informal proof would run as follows:

Let \(a \) be an arbitrary object.

Suppose \(a \) is an \(F \).

Since all \(F \)'s are \(G \)'s, \(a \) is a \(G \).

Now suppose \(a \) is not a \(G \). Contradiction.

We no longer suppose \(a \) is an \(F \): \(a \) is not an \(F \).

So if \(a \) is a non-\(G \) then \(a \) is a non-\(F \).

But \(a \) was arbitrary.

Thus all non-\(G \)'s are non-\(F \)'s.

In logical notation the pattern of proof is

\[
\begin{array}{c}
\forall x (Fx \rightarrow Gx) \\
Fa \\
\vdots \\
Ga \\
\vdots \\
\neg Fa \\
\vdots \\
\neg Ga \\
\vdots \\
\forall x (\neg Gx \rightarrow \neg Fx)
\end{array}
\]

At step (1), having reached \(\neg \) from the assumption \(Fa \) and certain
others, we chose to retain the latter and conclude \(\sim Fa \), thereby discharging the assumption Fa. This was an application of the Rule of Reductio ad Absurdum, or \(\sim \) Introduction.

Given a proof of \(\ast \) from \(\varphi \) and certain other premises we may immediately infer \(\sim \varphi \). This conclusion does not depend on \(\varphi \), but only on the other premises:

\[
\begin{array}{c}
\vdash \varphi \\
\vdash \\
\vdash \ast \\
\vdash \sim \varphi \\
\end{array}
\]

In applying this rule there does not have to be an assumption of the form \(\varphi \) to be discharged.

Now consider a third simple argument:

(3) Everything is either F or G
 All F's are H's
 All G's are H's
 Everything is an H

Translated into logical notation this argument becomes

\[
\forall x(Fx \lor Gx) \\
\forall x(Fx \supset Hx) \\
\forall x(Gx \supset Hx) \\
\forall x Hx
\]

An informal proof would run as follows:

Let \(a \) be an arbitrary object.
Since everything is either F or G, \(a \) is either F or G.
Case (i): \(a \) is F. Since all F's are H's, \(a \) is an H.
Case (ii): \(a \) is G. Since all G's are H's, \(a \) is an H.
Since \(a \) is F or G we have \(a \) is an H independently of the assumptions for Case (i) and Case (ii).
But \(a \) was arbitrary.
Thus everything is an H.

In logical notation the pattern of argument is

\[
\begin{array}{c}
\forall x(Fx \lor Gx) \\
\forall x(Fx \supset Hx) \\
\forall x(Gx \supset Hx) \\
F a \lor G a \\
F a \supset H a \\
G a \supset H a \\
\end{array}
\]

The final step discharges the assumption Fa. It is an application of the
Rule of ∃ Elimination

\[
\begin{array}{c}
\varphi(a) \\
\vdots \quad \cdots \\
3x\varphi(x) \quad \varphi (a) \\
\hline
\varphi
\end{array}
\]

In applying the rule we must ensure that
(i) \(a\) does not occur in \(3x\varphi(x)\)
(ii) \(a\) does not occur in \(\varphi\)
(iii) \(a\) does not occur in any assumption, other than \(\varphi(a)\), on which
the upper occurrence of \(\varphi\) depends.

These are the proof-theoretic conditions for \(a\)'s being an 'arbitrary' \(F\)
and for the conclusion \(\varphi\) in the subproof on the right to be independent
of \(a\). If these conditions are met then by appropriate substitutions of any given term \(t\) we can obtain from that subproof a proof of \(\varphi\) from \(\varphi(t)\) and the other premisses.

This suggests another analogy, this time between ∃ and ∨. Suppose
again that there are only two individuals, called 0 and 1. Suppose we
have a proof of \(\varphi\) from \(\varphi(a)\) and certain other premisses, with \(a\)
satisfying the conditions above. Then by appropriate substitutions we can obtain a proof of \(\varphi\) from \(\varphi(0)\) and those other premisses, and a
proof of \(\varphi\) from \(\varphi(1)\) and the other premisses. With \(3x\varphi(x)\) equivalent to \(\varphi(0) \lor \varphi(1)\) we have the analogy

\[
\begin{array}{c}
\varphi(a) \\
\vdots \quad \cdots \\
\varphi(0) \quad \varphi(1) \\
\hline
\varphi
\end{array}
\]

Once again the analogy extends, by multiple ∨-eliminations, to the
case where the domain consists of any finite number of named individuals.

We have so far stated introduction and elimination rules for ¬, ∧, ∨, ∃, and ∨. These, however, will not suffice for the proof of the
following obviously valid argument (given our definition of validity, not the intuitions of entailment theorists such as Anderson and
Belnap):

\[
\begin{array}{c}
\varphi \\
\sim \varphi \\
\hline
\psi
\end{array}
\]

By adopting the

Absurdity Rule

\[
\begin{array}{c}
\varphi \sim \varphi \\
\hline
\varphi
\end{array}
\]

(ex falso quodlibet; pace Anderson, Belnap, et al.), we can give the proof

\[
\begin{array}{c}
\varphi \sim \varphi \\
\hline
\varphi
\end{array}
\]

The absurdity rule also has another conspicuous application in the
proof of the disjunctive syllogism

\[
\begin{array}{c}
\varphi \lor \varphi \\
\sim \varphi \\
\hline
\varphi
\end{array}
\]

The proof is as follows:

\[
\begin{array}{c}
(1) \\
\varphi \sim \varphi \\
\hline
\varphi \lor \varphi \\
\varphi \varphi \\
\hline
\varphi
\end{array}
\]

Note that in the extreme right hand subproof \(\varphi\) stands as both
assumption and conclusion. The single occurrence of \(\varphi\) is a proof of
itself from itself. In its role as subordinate conclusion it is brought
down as the main conclusion of proof by cases. In its role as an
assumption for proof by cases it is simultaneously discharged.

Finally, how do we prove the logical truth \(\varphi \lor \sim \varphi\)? We need to
prove it from no assumptions at all. Thus we require a proof whose
conclusion is \(\varphi \lor \sim \varphi\) and whose assumptions have all been discharged
in the course of reaching that conclusion.

An obvious answer is to adopt the

Law of Excluded Middle

\[
\varphi \lor \sim \varphi
\]

as an axiom scheme. Any substitution instance trivially constitutes a
proof of itself from no assumptions (hence the inference stroke with
nothing written above it). A second possibility would be to adopt the
Rule of Dilemma

\[
\begin{array}{c}
\psi \\
\vdots \\
\psi
\end{array}
\quad
\begin{array}{c}
\neg \psi \\
\vdots \\
\neg \psi
\end{array}
\quad
\begin{array}{c}
\psi
\end{array}
\]

by which we can construct the proof

\[
\begin{array}{c}
\psi \\
\vdots \\
\psi
\end{array}
\quad
\begin{array}{c}
\neg \psi \\
\vdots \\
\neg \psi
\end{array}
\quad
\begin{array}{c}
\psi \\
\vdots
\end{array}
\]

\[
\psi \lor \neg \psi \quad \neg \psi \\
\frac{\psi \lor \neg \psi}{\psi \lor \neg \psi}
\]

Without either excluded middle or dilemma we can at least prove # from \(\neg (\psi \lor \neg \psi) \) by means of rules already stated:

\[
\begin{array}{c}
\psi
\end{array}
\quad
\begin{array}{c}
\neg \psi
\end{array}
\quad
\begin{array}{c}
\psi \lor \neg \psi
\end{array}
\quad
\begin{array}{c}
\neg \psi
\end{array}
\quad
\begin{array}{c}
\psi \lor \neg \psi
\end{array}
\quad
\begin{array}{c}
\neg (\psi \lor \neg \psi)
\end{array}
\quad
\begin{array}{c}
\psi
\end{array}
\]

Thus by a terminal application of the Rule of Classical Reductio ad Absurdum

\[
\begin{array}{c}
\psi
\end{array}
\quad
\begin{array}{c}
\neg \psi
\end{array}
\quad
\begin{array}{c}
\vdots
\end{array}
\quad
\begin{array}{c}
\psi
\end{array}
\]

we would have the desired result. Alternatively, one could apply \(\neg \)-introduction once more to obtain \(\neg \neg (\psi \lor \neg \psi) \), thereby discharging the only assumption \(\neg (\psi \lor \neg \psi) \), and then apply the Rule of Double Negation

\[
\begin{array}{c}
\neg \neg \psi
\end{array}
\quad
\begin{array}{c}
\psi
\end{array}
\]

to obtain the desired result.

Any proof constructed as a tree of immediate inferences according to the rules stated above is valid, in the sense that if all its undischarged assumptions are true then its conclusion is true also. The validity of each rule above (except, perhaps, the Absurdity Rule) derives from the classical meanings of the logical operators. Not to accept any of these rules as valid is not to understand the classical meaning of the logical operator concerned. Not to accept an accumulation of valid steps as amounting overall to a valid argument is not to understand the notion of a (classical *) valid argument.

4.2 Rules of inference as inductive causes in a definition of proof.

In Chapter 1 we discussed the general conditions that a piece of discourse must satisfy in order to count as a proof of a conclusion from certain premises. The proof should be composed of finitely many steps of inference, each in accordance with one of a fixed set of rules of inference that are obviously valid. At each step we must be able effectively to determine which rule, if any, has been correctly applied. Starting with the premises one would infer intermediate conclusions, which could then be used as premises for further applications of rules of inference. One might also, as seen in the previous section, introduce assumptions 'for the sake of argument' that are to be discharged at some later step in the proof. By drawing intermediate inferences in this way, some of which may discharge earlier judiciously chosen assumptions, we eventually infer the overall conclusion to be established. The conclusion will depend on the undischarged assumptions of the proof. These should be among the premises of the argument whose validity is to be established.

An important feature of this process is that every intermediate conclusion is itself the 'overall' conclusion of the subproof at whose last step it was inferred. Thus the process of constructing proofs is cumulative. Proofs \(\Pi_1, \ldots, \Pi_n \) of \(\varphi_1, \ldots, \varphi_n \), respectively, turn any proof \(\Pi \) of \(\varphi \) from \(\varphi_1, \ldots, \varphi_n \) into a proof of \(\varphi \) from (at most) the combined premises of \(\Pi_1, \ldots, \Pi_n \):

\[
\Pi_1 \ldots \Pi_n \quad (\varphi_1 \ldots \varphi_n) \quad \Pi \quad (\varphi)
\]

This transitivity of proof is nowhere better illustrated than in mathematical theories, where previously proved theorems are used as premises in the proofs of new ones. Indeed, were it not for transitivity of proof the deductive fabric of mathematics would disintegrate.

Given that proofs may thus be built up from smaller proofs, it becomes important to keep account of the premises on which any conclusion depends. We can do this if we know how each rule of
inference determines the premises its conclusion depends on. These premises can be determined once we know which premises support the intermediate conclusions that serve as premises for the application of that rule.

Moreover, which rule is being applied, and that it is correctly applied, must be determined only by structural conditions on the subproofs whose conclusions are the premises for, and on the conclusion of, the application of that rule. It must be possible effectively to determine whether these conditions hold, otherwise we shall not in general be able effectively to recognise a proof as such when we see one.

Because each application of a rule of inference forms a new proof from proofs already constructed, a rule of inference can be understood as a clause in an inductive definition of proof. Let us use the notation $\mathcal{P}(\Pi, \varphi, \Delta)$ to mean ‘Π is a proof of φ depending on the set Δ of premises’. The obvious basis clause is

$$\mathcal{P}(\varphi, \varphi, \emptyset)$$

The general form of a rule of inference is that of an inductive clause:

$$\begin{align*}
\mathcal{P}(\Pi_1, \varphi_1, \Delta_1) \\
\vdots \\
\mathcal{P}(\Pi_n, \varphi_n, \Delta_n)
\end{align*}
$$

If

$$\begin{align*}
\mathcal{P}(\Pi_1, ..., \Pi_n, \varphi, f(\Pi_1, ..., \Pi_n, \varphi)) \\
\mathcal{P}(\Pi_1, ..., \Pi_n, \varphi)
\end{align*}
$$

then

$$\mathcal{P}(\Pi_1, ..., \Pi_n, \varphi, f(\Pi_1, ..., \Pi_n, \varphi))$$

Here n, f, and f depend on the rule in question. In the previous section we stated rules for which n was 1, 2 or 3. f is an effectively determinable condition (perhaps the null condition) on $\Pi_1, ..., \Pi_n, \varphi$.

Examples are the conditions on the name involved in applications of \lor-introduction or \exists elimination. $f(\Pi_1, ..., \Pi_n, \varphi)$ is the effectively determinable set of premises on which the conclusion φ depends. In many cases it is just $\Delta_1 \cup ... \cup \Delta_n$, but in other cases it will be the result of subtracting discharged premises in the appropriate way.

Details will emerge below. The new proof

$$\Pi_1, ..., \Pi_n, \varphi$$

is the result of writing down $\Pi_1, ..., \Pi_n$ so that their conclusions are on the same horizontal line, drawing a horizontal inference stroke beneath them and writing φ below the stroke. More abstractly, since we wish to be able to speak of proofs that might never be written down,

$$\Pi_1, ..., \Pi_n, \varphi$$

may be thought of as an abstract mathematical entity like the ordered sequence $(\Pi_1, ..., \Pi_n, \varphi)$ or the labelled tree

$$\begin{array}{c}
\phi \\
\Pi_1 \ldots \Pi_n
\end{array}
$$

If we wish specifically to mention the premises and conclusions we might write

$$\begin{array}{c}
\Delta_1 \ldots \Delta_n \\
\Pi_1 \ldots \Pi_n
\end{array}
$$

instead of

$$\begin{array}{c}
\Pi_1 \ldots \Pi_n, \varphi
\end{array}
$$

When $f(\Pi_1, ..., \Pi_n, \varphi)$ is simply the union $\Delta_1 \cup ... \cup \Delta_n$ of all the premises of the subordinate proofs $\Pi_1, ..., \Pi_n$, the rule may be stated graphically as

$$\begin{array}{c}
\Pi_1 \ldots \Pi_n
\end{array}
$$

and where f is the null condition it is not mentioned. When $f(\Pi_1, ..., \Pi_n, \varphi)$ is more complicated as a result of discharge of certain assumptions, then a similar graphic statement of the rule is possible (as we have seen in the previous section) using ‘discharge strokes’ over the relevant assumptions.

If $\mathcal{P}(\Sigma, \varphi, \Gamma)$, $\varphi \in \Delta$ and $\mathcal{P}(\Pi, \varphi, \Delta)$ then Σ will be the proof obtained by writing the proof Σ above each initial (undischarged) occurrence of φ in Π, so that φ stands as the conclusion of a copy of Σ at each such occurrence:

$$\begin{array}{c}
\Gamma \\
\Sigma \\
\ldots \varphi \ldots \varphi
\end{array}
$$
Obviously then we have that the overall result, viz. \(\Sigma \Phi \), is a proof of \(\varphi \) from the set of assumptions \(\Gamma \cup (\Lambda \setminus \{\psi\}) \). If \(\varphi \notin \Lambda \), then \(\Phi \) is defined simply to be \(\Pi \). The definition of \(\Phi \) will be useful in subsequent discussion of various transformations of proofs.

4.3 The rules of section 1 construed in the manner of section 2. Let us now examine how each of the rules of inference stated above exhibits the general form just discussed. We use the notation \(\varphi^t \) for the result of substituting the closed term \(t \) at every free occurrence of the variable \(x \) in \(\varphi \). \(\varphi^t \) is the result of replacing \(a \) at every occurrence in \(\varphi \) by a variable \(x \) that is not bound by any quantifier in \(\varphi \) which has \(a \) within its scope.

&-Introduction

If \(\Pi_1 \) is a proof of \(\varphi_1 \) depending on the set of assumptions \(\Delta_1 \), and if \(\Pi_2 \) is a proof of \(\varphi_2 \) depending on the set of assumptions \(\Delta_2 \), then

\[
\Pi_1, \Pi_2 \quad \varphi_1 & \varphi_2
\]

is a proof of \(\varphi_1 \& \varphi_2 \) depending on the set of assumptions \(\Delta_1 \cup \Delta_2 \). Graphically, this rule (which is really a clause in the inductive definition of proof) may be stated as

\[
(\varphi_1 \& \varphi_2) \quad \varphi_1 \& \varphi_2
\]

v-Introduction

(i) If \(\Pi \) is a proof of \(\varphi \) depending on the set of assumptions \(\Delta \), then

\[
\Pi \quad \varphi \lor \psi
\]

is a proof of \(\varphi \lor \varphi \) depending on the set of assumptions \(\Delta \).

(ii) If \(\Pi \) is a proof of \(\varphi \) depending on the set of assumptions \(\Delta \), then

\[
\Pi \quad \varphi \lor \psi
\]

is a proof of \(\varphi \lor \psi \) depending on the set of assumptions \(\Delta \).

Graphically:

\[
\varphi \lor \varphi \quad \varphi \lor \varphi
\]

For the statement of the remaining rules let us use the convenient abbreviation \(\mathcal{A}(\Pi, \varphi, \Delta) \) for '\(\Pi \) is a proof of \(\varphi \) depending on the set of assumptions \(\Delta \)'. Where there are more than one 'if ...' in the statement of the rule, we shall write the relevant conditions in a column contained in braces.
\& Elimination

(i) If $\mathcal{A}(1, \psi \land \phi, \Lambda)$ then $\mathcal{A}(\psi \land \phi, \Lambda)$

(ii) If $\mathcal{A}(1, \psi \land \phi, \Lambda)$ then $\mathcal{A}(\phi \land \psi, \Lambda)$

Graphically:

\[
\frac{\psi \land \phi \quad \psi \land \phi}{\psi}
\]

\& Elimination

\[
\begin{align*}
\text{If } & \mathcal{A}(1, \psi \lor \phi, \Delta_1) \\
\text{and } & \mathcal{A}(1, \theta, \Delta_2)
\end{align*}
\text{then } \mathcal{A}(\frac{1_1 \cdot 1_2 \cdot 1_3 \theta \Delta_1 \lor (\Delta_2 \setminus \psi) \lor (\Delta_2 \setminus \phi)}{\theta})
\]

Graphically:

\[
\begin{array}{cccccc}
\Delta_1 & \Delta_2 & \Delta_3 & \psi & \phi \\
1_1 & 1_2 & 1_3 & \theta & \theta & \theta
\end{array}
\]

\rightarrow Elimination

\[
\begin{align*}
\text{If } & \mathcal{A}(1, \psi \rightarrow \phi, \Delta_1) \\
\text{and } & \mathcal{A}(1, \theta \Rightarrow \phi, \Delta_2)
\end{align*}
\text{then } \mathcal{A}(\frac{1_1 \cdot 1_2 \phi, \Delta_1 \cup \Delta_2}{\theta})
\]

Graphically:

\[
\frac{\psi \quad \phi \rightarrow \phi}{\phi}
\]

\exists Elimination

\[
\begin{align*}
\text{If } & \mathcal{A}(1, \exists \psi \phi, \Delta_1) \\
\text{and } & \mathcal{A}(1, \phi \Delta_2)
\text{and } a \text{ does not occur in } \exists \psi \phi \text{ or } \Delta_2 \setminus \psi \phi
\end{align*}
\text{then } \mathcal{A}(\frac{1_1 \cdot 1_2 \phi, \Delta_1 \cup (\Delta_2 \setminus \psi \phi)}{\theta})
\]

Graphically:

\[
\begin{array}{cccccc}
\psi \phi \quad \psi \phi \\
1_1 & 1_2 & \psi \phi & \psi \phi
\end{array}
\]

where a does not occur in $\exists \psi \phi \phi \phi$ or any assumption other than $\psi \phi \phi \phi$ on which the upper occurrence of ϕ depends.

\forall Elimination

If $\mathcal{A}(1, \forall \phi \psi, \Lambda)$ then $\mathcal{A}(\frac{1_1 \phi, \phi \psi, \Lambda}{\theta})$

Graphically:

\[
\frac{\forall \phi \psi}{\phi}
\]

Law of Excluded Middle

$\mathcal{A}(\phi \lor \neg \phi, \psi \lor \neg \phi, \emptyset)$. Graphically:

\[
\frac{\phi \lor \neg \phi}{\phi}
\]

Dilemma

If $\mathcal{A}(\frac{1_1 \cdot 1_2 \phi, \psi \Delta_1 \lor (\Delta_1 \setminus \phi)}{\phi})$

Graphically:

\[
\begin{array}{cccccc}
\Delta_1 & \Delta_2 & \psi \lor \phi \lor \phi \\
1_1 & 1_2 & \phi & \phi & \phi
\end{array}
\]

Classical Reductio ad Absurdum

If $\mathcal{A}(1, \psi \top \Delta)$ then $\mathcal{A}(\frac{1_1 \phi, \psi \top \Delta \setminus \phi}{\phi})$

Graphically:

\[
\begin{array}{cccccc}
\psi \top \phi \phi \phi \\
1_1 \phi \phi \phi
\end{array}
\]

Double Negation

If $\mathcal{A}(1, \neg \neg \psi, \Delta)$ then $\mathcal{A}(\frac{\phi \psi}{\phi})$

Graphically:

\[
\frac{\neg \neg \psi}{\psi}
\]

Note that no formula with free variables can occur in a proof. Proofs are tree-like arrays of sentences, in which all variables are bound. We restrict the basis clause in the definition of proof to sentences; likewise with the law of excluded middle. Any term introduced by \&-elimination is to be closed. It follows that no formula with free variables can ever occur in a proof. The inductive definition of proof is naturally completed by a closure clause to the effect that nothing is a proof unless its being so follows from the basis clause and the clauses that 'are' the rules of inference stated above.
4.4 Remarks on discharging assumptions. The rules which permit discharge of assumptions are $\sim I$, $\supset I$, $\vee E$, $3-E$, classical reductio and dilemma. An important point to make is that discharge is a permissible, not an obligatory operation when applying one of these rules. Thus for example

$$\frac{\psi}{\psi \supset \phi}$$

is a proof consisting of one step of $\supset I$ at which no assumption of the form ψ is discharged. Likewise the final step of the proof

$$\frac{\psi}{\sim \psi} \quad \frac{\phi}{\ast} \quad \frac{\sim \psi}{\phi \vee \sim \psi}$$

might be regarded as an application of $\sim I$ at which no assumption of the form ψ is discharged. Equally it might be regarded as an application of the absurdity rule. Equally it might be regarded as an application of classical reductio at which no assumption of the form $\sim \psi$ is discharged.

A second important point is that one may discharge an assumption which is simultaneously a premiss for the application of the rule in question. We saw this in the earlier proof of disjunctive syllogism. An even simpler example is

$$\frac{\phi}{\psi \supset \psi} \quad \frac{\psi}{\phi \supset \psi}$$

In this proof of $\psi \supset \psi$ from no assumptions the application of $\supset I$ discharges the assumption ψ, which is also the premiss for that application of $\supset I$.

When a proof is being written down, and discharge strokes are being inscribed and numbered so as to show the step at which the discharge is effected, one indicates the discharge of an assumption at all its presently undischarged occurrences. Thus in the proof

$$\frac{\phi \quad \psi \supset \psi}{\phi \quad \psi \supset \theta} \quad \frac{\phi \quad \psi \supset \theta}{\psi \supset (\phi \& \theta)}$$

the final application of $\supset I$ discharges ψ at the two occurrences indicated. Discharge strokes do not, strictly, form part of the proof proper. Proofs have been defined as tree-like arrays of occurrences of sentences without any mention of discharge strokes in the definition.

These strokes are added to the proof when it is written down merely as a mnemonic device to help keep account of the assumptions on which the conclusion depends.

There is an obvious analogy between stage-by-stage justifications of the grammaticality of formulae, keeping track of which occurrences of variables are free, and the stage-by-stage justifications of the 'proofhood' of tree-like arrays of formulae, keeping track of the assumptions on which the conclusion depends. When all the variables in a formula are bound we have a sentence. When all the assumptions in a proof have been discharged we have a proof of a theorem. Simple examples of proofs of theorems are those given above for $\psi \supset \phi$ and $\psi \vee \sim \psi$. Another is

$$\frac{\phi}{\psi \supset \phi} \quad \frac{\phi \supset \psi}{\phi \supset (\psi \supset \phi)}$$

4.5 Intuitionistic and classical logic. The introduction rules allow one to infer a conclusion in which one introduces a dominant occurrence of the logical operator concerned. By means of an introduction rule one reasons directly towards a more complex conclusion. The elimination rules, on the other hand, allow one to reason away from a complex premise involving a dominant occurrence of the operator concerned. This premise is called the major premise for the elimination.

The introduction and elimination rules, together with the absurdity rule, constitute what is known as intuitionistic logic. By confining ourselves to these rules in the inductive definition of proof we obtain a definition of intuitionistic proof. We write $\Delta \vdash \psi$ as an abbreviation of 'There is an intuitionistic proof of ψ depending on a subset of Δ'.

If we broaden our definition of proof by allowing as an extra clause in the inductive definition any one of the four rules

(i) excluded middle
(ii) dilemma
(iii) classical reductio
(iv) double negation

we obtain a definition of classical proof. Exactly what counts as a classical proof will of course depend on exactly which one of rules (i)–(iv) is adopted. It might therefore be appropriate to talk of classical proof in each of the senses (i), (ii), (iii) and (iv). These differences, however, are unimportant in the light of the following fact:
(c) If there is a classical proof of \(\varphi \) from \(\Delta \) in any one of the senses (i)–(iv) then there is a classical proof of \(\varphi \) from \(\Delta \) in any one of the other senses.

We may therefore introduce \(\Delta \vdash \varphi \) as an abbreviation of 'There is a classical proof of \(\varphi \) depending on a subset of \(\Delta \)' without bothering to specify which of the four classical negation rules have been incorporated into the system.

The result (c) may be established as follows. First, excluded middle yields dilemma:

\[
\begin{array}{c}
\varphi \\
\sim \varphi \\
\vdots \\
\vdots \\
\varphi \lor \sim \varphi \\
\varphi \\
\end{array}
\]

Secondly, dilemma yields classical reductio:

\[
\begin{array}{c}
\sim \varphi \\
\vdots \\
\vdots \\
\varphi \\
\varphi \\
\end{array}
\]

Thirdly, classical reductio yields double negation:

\[
\begin{array}{c}
\sim \varphi \\
\sim \sim \varphi \\
\vdots \\
\vdots \\
\varphi \\
\end{array}
\]

Finally, to bring the chain of derivability full circle, double negation yields the law of excluded middle:

\[
\begin{array}{c}
\varphi \\
\varphi \lor \sim \varphi \\
\sim (\varphi \lor \sim \varphi) \\
\vdots \\
\vdots \\
\varphi \\
\end{array}
\]

These schemata provide obvious ways of transforming a classical proof in any of the senses (i)–(iv) into a classical proof in any of the other senses.

When there is a classical (intuitionistic) proof of \(\varphi \) from \(\Delta \) we say that \(\varphi \) is classically (intuitionistically) derivable from \(\Delta \). Obviously if a conclusion is intuitionistically derivable from certain premises then it is classically derivable from them, since every intuitionistic proof counts as a classical proof according to our definition. The converse, however, does not hold in general. Some conclusions are classically but not intuitionistically derivable from certain premises. We are not yet in a position to demonstrate this. At this stage it could only be a plausible conjecture made on the basis of some experience of trying to construct intuitionistic and classical proofs. Such experience might lead one strongly to believe that, for example, there is no intuitionistic proof of the law of excluded middle. This is indeed the case, but in order to demonstrate it conclusively we need first to provide a soundness proof for the intuitionistic system with respect to its own semantics. We shall then be able to provide a counterexample to the law of excluded middle within the intuitionistic semantics. This will show via soundness that the law of excluded middle is indeed not intuitionistically derivable. These results will be given in a subsequent chapter. For the present the reader must take it on trust that the classical derivability relation properly extends the intuitionistic one.

4.6 Some simple proofs -- mimicking truth tables, and dualities. We recall the truth tables for \(\sim, \land, \lor \) and \(\supset \). These truth tables may be mimicked within intuitionistic logic as follows. Replace each occurrence of \(T \) in a table by the formula to which it is assigned, and replace each occurrence of \(F \) by the negation of the formula to which it is assigned. The tables then become

\[
\begin{array}{c}
\varphi \lor \sim \varphi \\
\varphi, \sim \varphi \\
\varphi \lor \varphi \\
\end{array}
\]

Each of these arguments is intuitionistically provable. Dropping trivial and redundant ones, and those requiring for their proof only one application of an introduction rule, and suppressing mention of unnecessary premises, we have the following as the remaining arguments requiring proofs consisting of more than one step:

\[
\begin{array}{c}
\varphi \lor \sim \varphi \\
\varphi, \sim \varphi \lor (\varphi \supset \psi) \\
\sim \varphi \lor (\varphi \supset \psi) \\
\sim \varphi \lor (\varphi \supset \psi) \\
\end{array}
\]
The following are intuitionistic proofs of these arguments, respectively:

\[\varphi \vdash \varphi \rightarrow \psi \]
\[\vdash \varphi \varphi \rightarrow \psi \]
\[\vdash \varphi \varphi \rightarrow \psi \]
\[\vdash \varphi \varphi \rightarrow \psi \]

The analogies between \(\land \) and \(\forall \) and between \(\lor \) and \(\exists \) are strikingly brought out in the proofs of the following so-called 'dual' statements of deducibility:

\[\sim(\varphi \land \psi) \vdash \sim \varphi \lor \sim \psi \]
\[\sim \varphi \lor \sim \psi \vdash \exists x \sim \varphi \]
\[\sim(\varphi \lor \psi) \vdash \sim \varphi \land \sim \psi \]
\[\sim \varphi \land \sim \psi \vdash \forall x \sim \varphi \]

Their proofs are as follows:

\[\vdash \varphi \rightarrow \psi \]

4.7 Expressive completeness and interderivability of rules. It is well known that in classical logic one needs only \(\sim \), one of \(\lor \), \(\land \), and \(\rightarrow \), and one of \(\forall \) and \(\exists \) for expressive completeness. A set of connectives and quantifiers is expressively complete if all truth functions and both \(\forall \) and \(\exists \) are definable in terms of them. Let us take, for example, \(\sim \), \(\land \) and \(\exists \). The other operators may be defined as follows:

\[\varphi \land \psi =_{df} \sim(\sim \varphi \land \sim \psi) \]
\[\varphi \rightarrow \psi =_{df} \sim(\varphi \land \sim \psi) \]
\[\forall x \varphi =_{df} \sim \exists x \sim \varphi \]

A simple truth tabular computation shows that the first two definitions are in order. Moreover, it is easily shown that any truth function (not just the two binary ones defined) is definable in terms of \(\sim \) and \(\land \). With the definitions just given, the introduction and elimination rules for \(\lor \), \(\rightarrow \) and \(\forall \) become
\(\forall E : \sim \exists x \sim \varphi \quad \forall I : \varphi \)

where \(a \) does not occur in any assumption on which \(\varphi \) depends.

These may be derived using the rules for \(\sim \), \& and \(\exists \) as follows:

\(\forall I : \begin{array}{c}
\varphi \\
\sim \varphi \\
\varphi \sim \varphi \\
\varphi \sim \varphi \\
\sim (\varphi \& \sim \varphi) \\
\sim (\varphi \& \sim \varphi)
\end{array} \quad \forall E : \begin{array}{c}
\varphi \\
\sim \varphi \\
\varphi \sim \varphi \\
\varphi \sim \varphi \\
\sim (\varphi \& \sim \varphi) \\
\sim (\varphi \& \sim \varphi)
\end{array} \)

In the derivation of \(\forall I \) the name \(a \) satisfies the conditions for the application of \(\exists E \) that occurs in the derivation. Note that the derivations of \(\forall E \), \(\rightarrow E \) and \(\forall E \) involve application of the classical reductio rule.

These derivations show that if in any true classical deducibility statement all occurrences of the defined operators \(\forall \), \(\rightarrow \) and \(\forall \) are eliminated by means of their definitions in terms of \(\sim \), \& and \(\exists \), then the transformed deducibility statement remains true by virtue of a proof which contains no applications of the rules for \(\forall \), \(\rightarrow \) and \(\forall \). Such a proof can obviously be determined from any which contains applications of the latter rules, by applying the derivations above.

The reader may obtain similar results for all the other expressively complete combinations of logical operators. A question that naturally arises is whether it is possible to use just one connective and one quantifier to define the others. The answer is affirmative. The best known connective for this purpose is the Sheffer stroke. \(\varphi \& \varphi \) means 'Not both \(\varphi \) and \(\varphi \)' and has the truth table

\[
\begin{array}{ccc}
\varphi & \varphi & \varphi \& \varphi \\
T & T & F \\
T & F & T \\
F & T & T \\
F & F & T
\end{array}
\]

The introduction and elimination rules for stroke, stated graphically, are

\[
\begin{align*}
\forall I : & \quad \varphi \Rightarrow \varphi \\
\forall E : & \quad \varphi \Rightarrow \varphi
\end{align*}
\]

Moreover, since stroke is to be the only connective from which all others, including negation, are to be defined, we adopt the reductio rule

\[
\begin{array}{c}
\varphi \Rightarrow \varphi \\
\vdots \\
\varphi
\end{array}
\]

Instead of using either \(\exists \) or \(\forall \) together with stroke to obtain an expressively complete set of operators for classical logic, one may use a quantifier version of the stroke so as to introduce a symmetry between the propositional and quantificational parts of the system. \(\forall(x) \, \varphi(x) \) will mean 'Nothing is both \(\varphi \) and \(\varphi \)' . The introduction and elimination rules for the quantifier-stroke are

\[
\begin{array}{c}
\forall I : & \quad \forall a \, \varphi_a \\
\forall E : & \quad \forall a \, \psi_a \Rightarrow \varphi_a \\
\forall I : & \quad \forall a \, \varphi_a \\
\forall E : & \quad \forall a \, \psi_a \Rightarrow \varphi_a
\end{array}
\]

where \(a \) does not occur in any assumptions other than \(\varphi_a \) or \(\phi_a \) on which \(\psi \) depends;
The definitions of the other usual operators in terms of the connective-stroke and quantifier-stroke are as follows:

\[\neg \psi =_{df} \psi' \psi \]
\[\psi \land \phi =_{df} (\psi | \phi)(\psi | \phi) \]
\[\psi \lor \phi =_{df} (\psi | \phi)(\phi | \psi) \]
\[\psi \rightarrow \phi =_{df} \psi'(\phi | \psi) \]
\[\exists x \psi =_{df} (x \mid \exists x \psi)(\psi | \exists x \psi) \]
\[\forall x \psi =_{df} (x \mid \forall x \psi)(\psi | \forall x \psi) \]

The reader should derive the introduction and elimination rules for the defined operators using only the rules above for the connective- and quantifier-strokes. It is important to realize that reduction to these primitives is possible only in the classical case. In the intuitionistic system none of \(\neg, \land, \lor, \exists \) and \(\forall \) can be defined in terms of the others. Although we do not prove this strictly here, note how we used classical reductio in deriving the rules for the defined connectives above. This is a strong hint that in intuitionistic logic the required derivations are not forthcoming. The obvious advantage of the strokes in the classical case is that when one proves general results about the system by induction on the complexity of formulae or by induction on the complexity of proofs there are fewer cases to consider in the inductive step, if the strokes are taken as the only means of building up formulae and the five rules above are taken as the only means of building up proofs. The disadvantage, however, is that it is very difficult to read formulae in the stroke notation and to grasp immediately what their truth conditions are.

4.8 Reasons for restrictions on quantifier rules. In this section we show why it is necessary to state the condition on \(\forall I \) and \(\exists E \) so carefully. First we consider

\[\forall x \psi \quad \forall x \psi' \]

where \(a \) does not occur in any assumption on which \(\psi \) depends.

The substitution of \(x \) for \(a \) must be uniform, otherwise the following 'proof' could be constructed:

\[\forall x Lxx \]
\[Laa \]
\[\forall y Lyay \]
\[\forall x \forall y Lxy \]

Secondly, if \(a \) were allowed to occur in an assumption on which \(\psi \) depends, the following 'proof' could be constructed:

\[\exists x Fx \]
\[\exists x Fx \]
\[\forall x Fx \]
\[\forall x Fx \]

Now we consider

\[\phi' \]
\[\exists Fx \]

where (i) \(a \) must not occur in \(\exists Fx \), (ii) \(a \) must not occur in \(\phi' \), and (iii) \(a \) must not occur in any assumption other than \(\phi' \) on which the upper occurrence of \(\phi \) depends. We shall construct three 'proofs' of invalid arguments, with each proof violating just one of the conditions (i)-(iii):

\[\forall y \exists x y < x \]
\[a < a \]

violation of (i)

\[\exists x a < x \]
\[\exists y y < y \]

violation of (i)

\[\exists x Fx \]
\[\exists x \exists x Fx \]

violation of (ii)

\[\exists x Gx \]
\[\exists x (Fx \& Gx) \]

violation of (iii)

The reader will easily find counterexamples to the three invalid arguments 'proved' here. Because of these 'proofs' we see that the conditions stated on \(\forall I \) and \(\exists E \) are necessary in order that these rules be truth preserving. In section 11 we shall see that they are sufficient, by proving the soundness of the deductive system for first order classical logic of which these rules are a part.

4.9 Substitutions in proofs. When a name occurs in subproofs in the way required for application of \(\forall I \) or \(\exists E \) we say that it occurs parametrically. We also say that it is the parameter for the application of the rule in question.
An application of the rule
\[
\begin{align*}
&\frac{}{\forall x \, \psi} \\
&\frac{}{\forall x \forall x' \, \psi}
\end{align*}
\]
is said to **close** all occurrences of \(a\) in \(\Pi\). Likewise an application of the rule
\[
\begin{align*}
&\frac{(\psi''')}{\Pi_1, \Pi_2} \\
&\frac{}{\exists x \exists y \, \psi}
\end{align*}
\]
is said to close all occurrences of \(a\) in \(\Pi_1\).

Any occurrence of a name in a proof \(\Pi\) which has not been closed by an application of \(\forall \cdot I\) or \(3 \cdot E\) in \(\Pi\) is said to be **free** in \(\Pi\). Henceforth \(\Pi^f\) will be understood as the result of replacing \(a\) at all its free occurrences in \(\Pi\) by the term \(t\) (understood not to contain any variables).

Suppose \(\Pi\) contains closed occurrences of \(a\). For example:
\[
\begin{align*}
&\frac{\forall x \, (F x \supset G x)}{\exists x \, G x_{(1)}} \\
&\frac{\forall x \, (F x \supset G x)}{\exists x \, G x_{(1)}}
\end{align*}
\]

If we replace \(a\) at all its closed occurrences in \(\Pi\) by a name \(b\) not occurring in \(\Pi\) the result is a proof of the same conclusion from the same undischarged assumptions:
\[
\begin{align*}
&\frac{\forall x \, (F x \supset G x)}{\exists x \, G x_{(1)}} \\
&\frac{\forall x \, (F x \supset G x)}{\exists x \, G x_{(1)}}
\end{align*}
\]

In general this is because by the definitions above there can be no closed occurrence of a name in the conclusion or in any undischarged assumption in any proof. We shall write \(\Pi(a/b)\) for the result of replacing \(a\) at all its closed occurrences in \(\Pi\) by a name \(b\) understood not to occur in \(\Pi\). Just as \(\forall x \psi(x)\) is a mere notational variant of \(\forall y \psi(y)\), so \(\Pi(a/b)\) is a mere notational variant of \(\Pi\), as our example above shows. If \(a\) has no closed occurrence in \(\Pi\), then \(\Pi(a/b)\) is simply \(\Pi\).

Suppose \(a_1, \ldots, a_n\) are all the names occurring in a closed term \(t\).

Suppose distinct new names \(b_1, \ldots, b_n\) occurring neither in \(t\) nor in \(\Pi\) are chosen to replace \(a_1, \ldots, a_n\) respectively at any of their closed occurrences in \(\Pi\). The resulting proof \(\Pi(a_1/b_1) \ldots (a_n/b_n)\) we shall simply call \(\Pi t\). Thus \(\Pi t\) is any proof like \(\Pi\) except that no name in \(t\) has closed occurrences in \(\Pi t\). \(\Pi t\) proves the same conclusion from the same undischarged assumptions as does \(\Pi\). Note that \(\Pi t\) is not uniquely defined for given \(\Pi\) and \(t\); we are using the notation \(\Pi t\) as a metaparameter over a class of proofs obtainable from \(\Pi\) by substitutions of the kind described.

The thrust of all these definitions is to be able to prove that proofs are 'schematic' in their free names, in the sense given by the following Lemma. The proof of the Lemma below is far more complicated than the simple point it is intended to demonstrate. These complications are the inevitable price of rigour in discussion of syntactical substitutions.

Lemma. If \(\mathcal{A}(\Pi, \varphi, \Lambda)\) and \(u\) is a closed term then \(\mathcal{A}((\Pi u)^f, \varphi'^f, \Lambda'^f)\).

Proof. We need consider only the case where \(b\) does occur free in \(\Pi\). We proceed by induction on the complexity of \(\Pi\). The basis step is obvious. In the inductive step we consider \(\Pi\) by cases according to the rule of inference last applied. For all rules except the quantifier rules the result is immediate from the inductive hypothesis, since term substitutions distribute across connectives. Let us now consider the rules (i) \(\forall \cdot E\), (ii) \(3 \cdot I\), (iii) \(\forall \cdot I\), and (iv) \(3 \cdot E\) in that order:

(i) Suppose \(\Pi\) is \(\Delta^f\). Then \(\Pi u^f\) is \(\Delta^f\).

\[
\begin{align*}
&\frac{\Sigma}{\forall x \varphi\,} \\
&\frac{\forall x \varphi\,}{\forall x' \varphi''} \\
&\frac{\forall x \varphi\,}{\forall x' \varphi''}\end{align*}
\]

Now \(\forall x (\varphi')_2\) is \(\forall x (\varphi')_2\), and \(\varphi'^f\) is \(\varphi'^f\). Thus \(\Pi u^f\) is

\[
\begin{align*}
&\frac{\Sigma}{\forall x \varphi\,} \\
&\frac{\forall x \varphi\,}{\forall x' \varphi''} \\
&\frac{\forall x \varphi\,}{\forall x' \varphi''}\end{align*}
\]

By inductive hypothesis applied to \((\Sigma u)^f\) and by the correctness of the final application of \(\forall \cdot E\) we have \(\mathcal{A}((\Pi u)^f, (\varphi')_2, \Lambda'^f)\).

(ii) Suppose \(\Pi\) is \(\Delta^f\). By reasoning as in (i), \(\mathcal{A}((\Pi u)^f, \exists x \varphi\,; \Lambda^f)\).

\[
\begin{align*}
&\frac{\Sigma}{\exists x \varphi\,} \\
&\frac{\exists x \varphi\,}{\exists x' \varphi''} \\
&\frac{\exists x \varphi\,}{\exists x' \varphi''}\end{align*}
\]
(iii) Suppose Π is Δ. Note that the final application of \forall-I closes Σ
Now since c does not occur in u, ϕ^c is ϕ^c. Thus $(\Pi u)^c$ is

\[
\begin{align*}
(\forall x \phi^c) \\
\Lambda_c^c \\
(\Sigma u)^c \\
(\exists x \phi^c) \\
\phi^c
\end{align*}
\]

By inductive hypothesis applied to $(\Sigma u)^c$ and the correctness of the final application of \forall-I we have $\mathcal{A}((\Pi u)^c, \phi^c, \Delta^c)$.

Now since c does not occur in u, ϕ^c is ϕ^c. Thus $(\Pi u)^c$ is

\[
\begin{align*}
(\forall x \phi^c) \\
\Lambda_c^c \\
(\Sigma u)^c \\
(\exists x \phi^c) \\
\phi^c
\end{align*}
\]

By inductive hypothesis applied to $(\Sigma u)^c$ and the correctness of the final application of \forall-I we have $\mathcal{A}((\Pi u)^c, \phi^c, \Delta^c)$.

(iv) Suppose Π is (ψ_i). Note that the final application of \exists-E

\[
\begin{align*}
\Delta_1 \\
\Delta_2 \\
\Sigma_1 \\
\Sigma_2 \\
(\exists x \psi)
\end{align*}
\]

closes a in Σ_2. Thus Πu is $\Sigma_1 u$ where c is chosen so as not to occur in u or Π, and therefore occurs parametrically in $\Sigma_1 u$ and $\Sigma_2 u$. So $(\Pi u)^c$ is

\[
\begin{align*}
(\exists x \phi^c) \\
\Delta_1^c \\
\Delta_2^c \\
(\Sigma_1 u)^c \\
(\Sigma_2 u)^c \\
(\exists x \phi^c)
\end{align*}
\]

4.10 Reduction procedures. Any proof ending with an application of an elimination rule can be reduced to a simpler proof if that elimination occurs immediately after a corresponding introduction. The following statement of reduction procedures for the logical operators will make it clear why this is so:

\[
\begin{align*}
\Pi_1 & \Pi_2 \\
\phi_1 & \phi_2 \\
\phi_1 \& \phi_2 & \to & \Pi_1 \\
\phi & \phi \\
\Pi & \phi \\
\phi_1 & \phi_2 & \to & \Pi_1 \\
\phi & \phi \\
\Pi_1 & \phi_1 \\
\phi & \phi \\
\phi_1 & \phi_2 \\
\phi & \phi \\
\phi & \phi \\
\phi & \phi
\end{align*}
\]
One school of thought in the philosophy of logic holds that an introduction rule is constitutive of the meaning of its logical operator. This meaning, it is maintained, is specified by stating the conditions under which one may ‘directly’ infer a conclusion with that operator dominant. Because of the reduction procedures, the elimination rules are justified on the grounds that by using them one cannot infer from directly established statements any conclusion that one could not directly establish without using the elimination rules. The reduction procedures ensure that the elimination rules conservatively extend the introduction rules: that is, they ensure that direct proofs of the premises of an elimination can be transformed into a direct proof of its conclusion. Therefore if one sees no need to justify the introduction rules, taking them as constitutive of the meanings of the logical operators, the task of justifying the rules of intuitionistic logic is complete. This discussion of course requires further explanation of what is meant by ‘direct’, but that would involve too lengthy a digression. The reader is referred to the appropriate items in the bibliography.

4.11 Soundness of classical logic. Other philosophers of logic, however, regard the meaning of an operator as consisting in the contribution it makes to determining the truth conditions of any sentence in which it occurs. The classical assumption is that any sentence is either true or false (but not both) in any situation about which it can be interpreted as saying something, even though it may in principle be impossible effectively to determine which is the case. The justification of the classical rules of inference consists in a demonstration that they are truth preserving: given any classical proof, if all its undischarged assumptions are true then its conclusion is true also; that is, the conclusion is a logical consequence of the undischarged assumptions.

Before giving a precise account of this result, let us look more closely at the definition of logical consequence. Recall that models were defined in 3.5 as possessing non-empty domains, and as assigning referents to all and only certain ‘distinguished’ names. The set of distinguished names can vary from model to model. In defining truth of a sentence in a model we required that every name occurring in the sentence be distinguished for the model concerned. Since, moreover, function signs are taken always to represent operations everywhere defined in the domain, there is no place in our semantical account for ‘non-denoting’ terms in the sentences involved.

When every name occurring in a sentence \(\psi \) is distinguished for a model \(\mathfrak{A} \), we say that \(\mathfrak{A} \) is for \(\psi \), and this of course can be the case
whether or not \(\phi \) is true in \(\mathfrak{A} \). When \(\mathfrak{A} \) is for every member of \(\Lambda \) we likewise say that \(\mathfrak{A} \) is for \(\Lambda \).

\(\mathfrak{A} \) must be for \(\phi \) before the question of the truth of falsity of \(\phi \) in \(\mathfrak{A} \) arises. When \(\phi \) is true in \(\mathfrak{A} \) we say that \(\mathfrak{A} \) is a model of \(\phi \). When \(\mathfrak{A} \) is a model of every member of \(\Lambda \) we likewise say that \(\mathfrak{A} \) is a model of \(\Lambda \). Obviously any model of \(\Lambda \) is a model for \(\Lambda \).

If a name \(a \) is not distinguished for \(\mathfrak{A} \) we may extend \(\mathfrak{A} \) to a model \(\mathfrak{A}_a \) by assigning \(a \) some referent \(\alpha \) in the domain of \(\mathfrak{A} \). The name \(a \) thereby becomes distinguished for the model \(\mathfrak{A}_a \). Likewise we may extend models with respect to any set of hitherto undistinguished names. Extensions of a model \(\mathfrak{A} \) simply 'deal with more names' than \(\mathfrak{A} \). The domain remains the same as before, as does the specification of operations for function signs and extensions for predicates. Trivially, every model extends itself; and is extended by any extension of any extension. The following two facts about extensions are also easily proved by induction on \(\phi \):

(i) If \(\mathfrak{A} \) is a model of \(\phi \), so is every extension of \(\mathfrak{A} \).
(ii) If \(\mathfrak{A} \) is for \(\phi \), and some extension of \(\mathfrak{A} \) is a model of \(\phi \),
then \(\mathfrak{A} \) is a model of \(\phi \).

We shall appeal to these facts about extensions throughout the soundness proof below.

We now define logical consequence as follows:

\[\Lambda \vdash \phi \text{ iff for every model } \mathfrak{A}, \text{ every extension of } \mathfrak{A} \text{ for } \phi \text{ is a model of } \phi. \]

Classical Soundness Theorem. If \(\mathcal{A}(\Pi, \phi, \Lambda) \) then \(\Lambda \vdash \phi \).

Proof. By induction on the complexity of \(\Pi \). The basis step is obvious.

In the inductive step we argue by cases according to the rule of inference applied last in \(\Pi \). We shall give the reasoning for the two 'difficult' quantifier rules, \(\forall I \) and \(\exists E \), and for the classical rule of dilemma. The others will be left to the reader.

\(\forall I \). Suppose \(\Pi \) is

\[\Lambda \\
\Sigma \\
\phi \\
\forall x \psi \]

Suppose \(\mathfrak{A} \) is a model of \(\Lambda \) and \(\mathfrak{B} \) is any extension of \(\mathfrak{A} \) for \(\forall x \psi \).

We show that \(\mathfrak{B} \) is a model of \(\forall x \psi \).

Let \(\beta \) be an arbitrary individual in the domain. Let \(b \) be a name undistinguished for \(\mathfrak{B} \). Extend \(\mathfrak{B} \) to \(\mathfrak{B}_b \) by letting \(b \) denote \(\beta \). Since \(a \) does not occur in \(\Lambda \) (for correctness of \(\forall I \)) we have by the previous

Lemma that \(\mathcal{A}(\Sigma b \mathfrak{B}_b, \psi', \Lambda) \). By inductive hypothesis applied to \(\Sigma b \mathfrak{B}_b \) we have that \(\Lambda \vdash \psi' \). Now \(\mathfrak{B}_b \) is a model of \(\Lambda \) and for \(\psi' \). Hence \(\mathfrak{B}_b \) is a model of \(\psi' \). Since \(b \) does not occur in \(\psi' \), \(\beta \) satisfies \(\psi' \) in \(\mathfrak{B}_b \).

But \(\beta \) was arbitrary. So \(\mathfrak{B} \) is a model of \(\forall x \psi' \).

\(\exists E \). Suppose \(\Pi \) is

\[\psi' \\
\Delta_1 \\
\Delta_2 \\
\Sigma_1 \\
\Sigma_2 \\
\exists x \psi \qquad \text{where } \Lambda = \Delta_1 \cup (\Delta_2 \psi') \]

Suppose \(\mathfrak{A} \) is a model of \(\Lambda \) and \(\mathfrak{B} \) is any extension of \(\mathfrak{A} \) for \(\phi \). We show that \(\mathfrak{B} \) is a model of \(\phi \).

Let \(\mathcal{C} \) be any extension of \(\mathfrak{B} \) for \(\exists x \psi \). By inductive hypothesis applied to \(\Sigma_1 \) we have that \(\Delta_1 \vdash \exists x \psi \). Hence \(\mathcal{C} \) is a model of \(\exists x \psi \). Thus some individual in the domain satisfies \(\phi \) in \(\mathcal{C} \). Call it \(\beta \). Let \(b \) be a name undistinguished for \(\mathcal{C} \). Extend \(\mathcal{C} \) to \(\mathcal{C}_b \) by letting \(b \) denote \(\beta \). So \(\mathcal{C}_b \) is a model of \(\psi' \). By conditions on \(a \) for correctness of \(\exists E \), \(a \) does not occur in \(\phi \). Hence by the previous Lemma we have that \(\mathcal{A}(\Sigma_1 b \mathfrak{B}_b, \psi, \Delta_2 \psi') \). By inductive hypothesis applied to \(\Sigma_1 b \mathfrak{B}_b \) we have that \(\Delta_2 \psi' \). By conditions on \(a \) for correctness of \(\exists E \), \(\Delta_2 = (\Delta_2 \psi') \cup (\psi') \).

Now \(\mathcal{C}_b \) is a model for this set and is also for \(\phi \). Hence \(\mathcal{C}_b \) is a model of \(\phi \). Finally \(\mathfrak{B}_b \) extends \(\mathfrak{B} \), and \(\mathfrak{B} \) is a model for \(\phi \). Thus \(\mathfrak{B} \) is a model of \(\phi \).

Dilemma. Suppose \(\Pi \) is

\[\phi \\
\neg \phi \\
\Delta_1 \\
\Delta_2 \\
\Sigma_1 \\
\Sigma_2 \\
\psi \\
\neg \psi \\
\phi \]

Suppose \(\mathfrak{A} \) is a model of \(\Lambda \) and \(\mathfrak{B} \) is any extension of \(\mathfrak{A} \) for \(\phi \). We show that \(\mathfrak{B} \) is a model of \(\phi \).

Let \(\mathcal{C} \) be any extension of \(\mathfrak{B} \) for \(\phi \) (and thus also for \(\neg \phi \)). There are now two cases to consider.

(1) \(\mathcal{C} \) is a model of \(\phi \). Then \(\mathcal{C} \) is a model of \(\Delta_1 \). By inductive hypothesis applied to \(\Sigma_1 \) we have that \(\Delta_1 \vdash \phi \). Hence, since \(\mathcal{C} \) is a model for \(\phi \), \(\mathcal{C} \) is a model of \(\phi \). Since \(\mathcal{C} \) extends \(\mathfrak{B} \) and \(\mathfrak{B} \) is a model for \(\phi \), it follows that \(\mathfrak{B} \) is a model of \(\phi \).

(2) \(\mathcal{C} \) is not a model of \(\phi \). Then \(\mathcal{C} \) is a model of \(\neg \phi \). So \(\mathcal{C} \) is a model of \(\Delta_2 \). By similar reasoning as in (1) it follows that \(\mathfrak{B} \) is a model of \(\phi \).

Thus \(\mathfrak{B} \) is a model of \(\phi \).
Note that we use non-intuitionistic reasoning in the metalanguage only in the case for dilemma. There we use the rule of dilemma itself in the metalanguage. In all other cases the metalinguistic reasoning is intuitionistic. Moreover in each case we use the rule concerned in the very metalinguistic reasoning carried out to establish its soundness. For example, in the case for \(\lor I \) we used \(\lor I \) in the metalanguage ("Let \(\beta \) be an arbitrary individual But \(\beta \) was arbitrary"). The reader will have no difficulty in locating metalinguistic uses of the other rules in the reasoning concerning each of them. So it appears that we establish the soundness of our rules of inference by using those very rules in the metalanguage, and doing so, moreover, in a conspicuously "one-to-one" fashion. For a discussion of the philosophical difficulties thereby engendered for a justification of deduction the reader is referred to papers of that title by Dummett and Haack.

4.12 Harmony and containment. Can one specify a meaning for a logical operator by laying down arbitrary introduction and elimination rules? An affirmative answer is too strong a claim to be attributed even to those who maintain that it is only from their introduction and elimination rules that logical operators derive their meanings.

Consider the connective \(\times \) governed by the sole introduction rule

\[
\frac{\varphi}{\varphi \times \psi}
\]

Intuition inclines one to say that this rule alone must confer upon \(\ldots \times \varphi \) the force of a superfluous rhetorical flourish. The introduction rule must make \(\varphi \times \varphi \) equivalent to \(\varphi \). Can we make explicit a general principle underlying this intuition? I think so, and would propose the following Principle of Harmony:

Introduction and elimination rules for a logical operator \(\lambda \) must be formulated so that a sentence with \(\lambda \) dominant expresses the strongest proposition which can be inferred from the stated premises when the conditions for \(\lambda \)-introduction are satisfied; while it expresses the weakest proposition which can feature in the way required for \(\lambda \)-elimination.

Some clarification of terminology is required here. The proposition expressed by \(\varphi \) is the class of sentences interdeducible with \(\varphi \). Since interdeducibility is an equivalence relation, logical relations between propositions are induced in an obvious way from logical relations between their members. The strongest proposition which has property \(F \) is the one among those with property \(F \) which is implied by any of them. For brevity we may identify sentences with the propositions they express; no confusion will arise.

It is easy to establish the following illustrations of our harmony principle:

(a) \(\varphi \land \varphi \) is the strongest proposition implied by \(\{\varphi, \varphi\} \).

(b) \(\varphi \land \varphi \) is the weakest proposition which implies \(\varphi \) implies \(\varphi \).

(c) \(\varphi \lor \varphi \) is the strongest proposition implied by \(\varphi \) and implies \(\varphi \).

(d) \(\varphi \lor \varphi \) is the weakest proposition which implies \(\varphi \) when \(\varphi \) implies \(\varphi \) and \(\varphi \) implies \(\varphi \).

(e) \(\varphi \rightarrow \varphi \) is the strongest proposition implied by \(\lambda \{\varphi\} \) when \(\lambda \) implies \(\varphi \).

(f) \(\varphi \rightarrow \varphi \) is the weakest proposition which, with \(\varphi \), implies \(\varphi \).

(g) \(\neg \varphi \) is the strongest proposition implied by \(\lambda \{\varphi\} \) when \(\lambda \) implies \(\varphi \).

(h) \(\neg \varphi \) is the weakest proposition which, with \(\varphi \), implies \(\varphi \).

(i) \(\forall x \varphi \) is the strongest proposition implied by \(\lambda \) when \(\lambda \) implies \(\varphi \) parametrically in \(a \).

(j) \(\forall x \varphi \) is the weakest proposition which, for all \(t \), implies \(\varphi \).

(k) \(\exists x \varphi \) is the strongest proposition which, for any \(t \), is implied by \(\varphi \).

(l) \(\exists x \varphi \) is the weakest proposition which, with \(\lambda \{\varphi\} \), implies \(\varphi \) when \(\lambda \) implies \(\varphi \) parametrically in \(a \).

For each logical operator the verification of the first claim depends on a consideration of the elimination rule, while the verification of the second claim depends on a consideration of the introduction rule.

Let us illustrate this in the case of \(\rightarrow \).

Verification of first claim. \(\varphi \rightarrow \varphi \) is the strongest proposition implied by \(\lambda \{\varphi\} \) when \(\lambda \) implies \(\varphi \).

For, suppose \(\theta \) is any proposition that is implied by \(\lambda \{\varphi\} \) when \(\lambda \) implies \(\varphi \). By \(\rightarrow \) \(\varphi \), \(\varphi \rightarrow \varphi \) imply \(\varphi \). Thus we would have that \(\varphi \rightarrow \varphi \) implies \(\theta \). Thus \(\varphi \rightarrow \varphi \) is strongest in the respect claimed.

Verification of second claim. \(\varphi \rightarrow \varphi \) is the weakest proposition that, with \(\varphi \), implies \(\varphi \).

For, suppose \(\theta \) is any proposition that, with \(\varphi \), implies \(\varphi \). Then, by \(\rightarrow \), \(\theta \) implies \(\varphi \rightarrow \varphi \). Thus \(\varphi \rightarrow \varphi \) is weakest in the respect claimed.

Similar illustrations for the other operators are left to the reader.

How does our harmony principle bear on the operator \(\times \) discussed above? With its introduction rule the principle would declare that \(\varphi \times \varphi \) is the strongest proposition implied by \(\varphi \). Since \(\varphi \) implies itself,
we would have that $\varphi \times \psi$ implies φ. In order therefore for both the inferences φ and $\varphi \times \psi$ to be valid the truth table for \times would have:

<table>
<thead>
<tr>
<th>φ</th>
<th>ψ</th>
<th>$\varphi \times \psi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

It would therefore be quite illegitimate, given the introduction rule for \times, arbitrarily to specify the elimination rule:

$$\frac{\varphi \times \psi}{\varphi}$$

since the second line of the truth table shows it to be invalid.

Another way of arriving at this conclusion is to observe that the elimination rule just mentioned cannot conservatively extend the introduction rule given earlier. For $0=0$ is a direct proof of $0=0$. But the proof:

$$\begin{align*}
0 &= 0 \\
(0=0) \times (0=1) &= 0 \\
0 &= 1
\end{align*}$$

offers no way of transforming the former direct proof of the premiss into a direct proof of the conclusion. There is no reduction procedure for \times.

The reduction procedures help to explicate the philosophical maxim that the conclusion of a proof is 'contained' in the premisses: contained, as Frege observed, not as roof beams are contained in a house but as a plant is contained in the seed from which it grows. We shall establish below the precise proof theoretical result that we need, namely the normalization theorem. Very roughly, by repeated application of the reduction procedures any proof can be converted into one in so-called 'normal form'. In a normal form proof no sentence occurs as the conclusion of an introduction and as the major premiss of an immediate elimination. Speaking figuratively, in the 'upper half' of a normal form proof one uses elimination rules to 'unpack' the information contained in the premisses, which is re-arranged in the 'lower half' by means of the introduction rules to yield the conclusion.

The internal structure of each of a set of premisses—the configuration of logical operators and non-logical expressions in each of them—determines the class of normal form proofs of conclusions that follow from them. We saw earlier in Chapter 2 how sentential structure may conveniently be represented by means of tree diagrams. Moreover, we have seen in this Chapter how proofs may be understood as tree-like arrays of sentence occurrences. The macroscopic proof tree is determined by the microscopic sentential trees of the premisses and conclusion. Frege's metaphor is therefore heightened by the analogy with the way in which the microstructure of genes determines the possible features of the adult organism that will develop from them. Biologists talk metaphorically of the maturing organism 'expressing' its genetic information. Even for a nihilist the individual life is at least a passage to a conclusion!

4.13 Identity and extensionality

The identity predicate $=$ has its own special and important meaning which requires us to specify two rules of inference.

Reflexivity of identity

$$\mathcal{M}(t=t, t=t, 0).$$

Graphically: $\frac{t=t}{t=t}$

Substitution of identicals

- If $\mathcal{M}(t_1, t_2, \Delta_1, \Delta_2)$ is $\phi \rightarrow \phi'$
- $\Delta_1 \land \Delta_2$ are closed terms

Graphically: $\frac{\phi \rightarrow \phi'}{\phi \rightarrow \phi'}$ where ϕ results from ψ by intersubstitution of the closed terms t_1 and u.

The last condition may also be expressed by saying that ψ and ϕ are t-u variants of one another.

As special cases of substitutivity we have $t=t$ $t=t$ which we abbreviate to $t=t$ (symmetry of identity); and $t=u$ $u=s$ (transitivity of identity).

The deductive power of first order logic with identity is not impaired if we restrict substitutivity of identicaless to atomic sentences ψ. If we wish to effect a substitution in a complex sentence we simply 'break it down' to atomic sentences by means of elimination rules, make appropriate substitutions in these atomic sentences by means of the restricted rule of substitutivity, and then 'build up' to the desired complex result by means of introduction rules.

Substitutivity of identicals is a principle of extensionality for
closed terms. The extension of a closed term is the object it denotes. The extension of a function sign is the operation on objects which it represents. The extension of a predicate is the set of (sequences of) objects of which it holds. The extension of a sentence is its truth value. All these extensions depend, of course, on the interpretation or model in question. Co-extensive expressions have the same extension.

A connective which is useful in discussions of co-extensiveness is the biconditional \(\equiv \). It may be taken as primitive, or defined in terms of others. The usual definition is

\[
\varphi \equiv \psi =_t (\varphi \supset \psi) \land (\psi \supset \varphi).
\]

The truth table for \(\equiv \) is

\[
\begin{array}{ccc}
\varphi & \psi & \varphi \equiv \psi \\
T & T & T \\
T & F & F \\
F & T & F \\
F & F & T \\
\end{array}
\]

which obviously shows that \(\varphi \equiv \psi \) expresses agreement in truth value of \(\varphi \) and \(\psi \). The deductive rules for \(\equiv \), primitive or derived, are stated graphically thus:

\[
\begin{array}{c}
\equiv I \\
\varphi \equiv \psi \quad \equiv I \\
\varphi \equiv \psi \\
\vdots \\
\varphi \equiv \psi \quad \equiv I
\end{array}
\]

When co-extensiveness of expressions is secured by a set \(\Delta \) of sentences we say that the expressions are co-extensive relative to \(\Delta \). For example:

1. The closed terms \(t \) and \(u \) are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash t = u \).
2. The one-place functions \(f \) and \(g \) are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash f(x) = g(x) \).
3. The one-place predicates \(F \) and \(G \) are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash \forall x F(x) = G(x) \).
4. The sentences \(\varphi \) and \(\psi \) are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash \varphi \equiv \psi \). This holds if and only if \(\Delta \vdash \varphi \) and \(\Delta \vdash \psi \). For this reason we also say that \(\varphi \) and \(\psi \) are interdefinable relative to \(\Delta \). We write \(\varphi \equiv_\Delta \psi \).

The principle of extensionality for expressions in general, roughly stated, is that if two expressions co-extensive relative to \(\Delta \) are ‘substituted’ for one another in any expression then the latter is co-extensive (relative to \(\Delta \)) with the result. It will suffice to state and prove this principle only in the case where the host expression is a sentence. So the principle we are concerned to establish is

If two expressions co-extensive relative to \(\Delta \) are ‘substituted’ for one another in a sentence \(\varphi \) then the result is interdefinable with \(\varphi \) relative to \(\Delta \).

I have said ‘substituted’ because this can be a complicated operation when the expressions involved are complex and substitution takes place within a quantified context. We shall now provide some definitions that enable us to talk precisely about substituting expressions for one another within larger expressions.

Let \(t(x_1, \ldots, x_n) \) be a term with just the variables \(x_1, \ldots, x_n \) free.

Suppose \(t_1, \ldots, t_n \) are terms (not necessarily distinct and not necessarily closed). Let \(\langle t_1, \ldots, t_n \rangle \), abbreviated to \(\langle t \rangle \), be the result of simultaneously replacing \(x_1, \ldots, x_n \) at all free occurrences in \(t \) by \(t_1, \ldots, t_n \) respectively.

We say \(\langle t \rangle \) occurs in an expression \(E \) if and only if for some \(t \) \(\langle t \rangle \) is a subterm of \(E \). We also say that \(\langle t \rangle \) occurs in \(E \) by virtue of \(t \). For example, \(f(x, g(x, y)) \) occurs in the formula \(F(x, y; g(f(x), h(y))) \) by virtue of \(\langle f(x, y) \rangle \), where \(f, g, h \) are function signs.

Likewise when \(\langle x_1, \ldots, x_n \rangle \) is a formula with just \(x_1, \ldots, x_n \) free we say \(\langle x \rangle \) occurs in \(E \) by virtue of \(\langle x \rangle \) if and only if \(\langle x \rangle \) is a subformula of \(E \).

Obviously when \(t \) is closed, \(t \) occurs in \(E \) if and only if \(t \) is a closed subterm of \(E \). We can say \(t \) occurs in \(E \) by virtue of the empty sequence \(\emptyset \). Likewise when \(\varphi \) is a sentence, \(\varphi \) occurs in \(E \) if and only if \(\varphi \) is a subformula of \(E \). We can say \(\varphi \) occurs in \(E \) by virtue of \(\emptyset \).

Suppose \(\varphi \) and \(\psi \) are alike except that one may have occurrences of \(u(t) \) where the other has occurrences of \(v(t) \), and vice versa. We say \(\varphi \) and \(\psi \) are \(t-u \) variants with respect to \(t \). We also say that they result from one another by intersubstituting \(t \) for \(u(t) \) and \(u(t) \). Likewise \(\varphi \) and \(\psi \) may be \(t-\emptyset \) variants.

When \(\ldots, x_n \) are the free variables of \(t \) and \(u \) let \(\forall \psi \equiv u \equiv u \) be the sentence \(\forall x_1 \ldots \forall x_n t = u \). When \(n = 0 \), i.e. when \(t \) and \(u \) are closed, then it is just the sentence \(t = u \). Likewise we may define \(\forall \psi \equiv 0 \equiv 0 \).

If \(t \) and \(u \) have the same free variables then \(t \) and \(u \) are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash \forall x t = u \). Likewise if \(\varphi \) and 0 have the same free variables then \(\varphi \) and 0 are co-extensive relative to \(\Delta \) if and only if \(\Delta \vdash \forall x \varphi \equiv 0 \).

The following theorem is a precise version of the principle of extensionality stated informally above.

Theorem

(1) Suppose \(t \) and \(u \) are co-extensive relative to \(\Delta \) and that one of them
occurs in the sentence ψ by virtue of I. Then ψ is interdeducible relative to Δ with any of its t-u variants with respect to I.

(i) Suppose ϕ and θ are co-extensive relative to Δ and that one of them occurs in the sentence ψ by virtue of I. Then ψ is interdeducible relative to Δ with any of its ϕ-θ variants with respect to I.

Proof. By induction on ψ.

Basis. ψ is an atomic sentence. Then t or u occurs in ψ by virtue of closed I.

(i) Suppose ρ is a t-u variant of ψ with respect to I. Then by

\[
\frac{\Delta \\
\frac{\forall \xi \ t = u \text{(multiple \forall-E)}}{\psi \\
\frac{\theta}{{t}(I) = {u}(I)} \text{(substitutivity of identicals)}}}{\rho}
\]

and a similar proof of the converse we have $\psi \vdash \rho$.

(ii) ϕ or θ occurs in ψ by virtue of I only because ψ is either $\phi(t)$ or $\theta(t)$. So by the proof

\[
\frac{\Delta \\
\frac{\forall \xi \ \phi = \theta \text{(multiple \forall-E)}}{\phi(t) \\
\frac{\theta(t)}{{t}(I)}}}{\phi(t) \equiv {\theta}(I)}
\]

and a similar proof of the converse, ψ is interdeducible relative to Δ with any of its ϕ-θ variants with respect to I.

Inductive Step. For part (ii) we suppose without loss of generality that ψ is neither $\phi(t)$ nor $\theta(t)$ since in those cases one could simply repeat the reasoning for Basis (ii). We perform the inductive step for parts (i) and (ii) by structurally identical arguments. Suppose ρ is a variant of ψ. (We need not bother to specify whether it is a t-u variant or a ϕ-θ variant.)

Suppose ψ is $\psi_1 \& \psi_2$. Then ρ is $\rho_1 \& \rho_2$, for variants ρ_1, ρ_2 of ψ_1, ψ_2 respectively with respect to I. By the proof

\[
\frac{\psi_1 \& \psi_2}{\psi_1} \\
\frac{\psi_1 \& \psi_2}{\psi_2}
\]

(by IH)

\[
\frac{\rho_1 \& \rho_2}{\rho_1} \\
\frac{\rho_1 \& \rho_2}{\rho_2}
\]

(by IH)

and a similar proof of the converse we have $\psi \vdash \rho$. When ψ is $\neg \psi_1$, $\psi_1 \lor \psi_2$, $\psi_1 \supset \psi_2$, the argument is similar, using elimination rules, inductive hypothesis, and introduction rules appropriately.

Now suppose ψ is $\forall \eta$. We are considering variants with respect to I of the form $\forall \xi \eta$, where ξ is a variant of η with respect to I. Let a be a name occurring neither in Δ nor in ψ. Then ξ_a is a variant of η_a with respect to I_a. Moreover, if t occurs in $\forall \eta$ by virtue of I then t occurs in η_a by virtue of I_a. Likewise if ϕ occurs in $\forall \eta$ by virtue of I then ϕ occurs in η_a by virtue of I_a. Thus by IH η_a is interdeducible with ξ_a relative to Δ. By the proof

\[
\frac{\forall \eta \\
\frac{\Delta \ \\ \eta_a}{\forall \xi_a}}{\forall \eta}
\]

and a similar proof of the converse we have $\forall \eta \vdash \forall \xi_a$.

Finally suppose ψ is $\exists \eta$. We are considering variants with respect to I of the form $\exists \xi$, where ξ is a variant of η with respect to I. Let a be a name occurring neither in Δ nor in ψ. By reasoning as in the previous case, η_a is interdeducible with ξ_a relative to Δ. By the proof

\[
\frac{\exists \eta \\
\frac{\Delta \ \\ \eta_a}{\exists \xi_a}}{\exists \eta}
\]

and a similar proof of the converse we have $\exists \eta \vdash \exists \xi_a$. This completes the proof of the theorem.

Note that we required substitutivity of identicals only for atomic sentences (in Basis (i)). Note also that I may be read as classical or intuitionistic deducibility throughout.

4.14 Some simple proofs. In this section we shall provide proofs of some simple arguments in order to illustrate further the rules of inference given above. First we provide the proof promised in 3.8 for the argument

Everyone has either fooled someone or been fooled by someone
Everyone who has fooled someone has fooled himself
Everyone who has been fooled by
someone has fooled himself
Everyone has both fooled someone
and been fooled by him

We shall use the following translation into logical notation, observing
the maxim of shallow analysis:

$$\forall x(Gx \land Hx)$$
$$\forall x(Gx \supset Fxx)$$
$$\forall x(Hx \supset Fxx)$$
$$\forall x3y(Fxy \land Fyx)$$

The proof is as follows:

$$(1) \quad \forall xGx \supset Fxx$$
$$(2) \quad \forall xGx \supset Fxx$$
$$\overset{Ga}{Ga} \quad \overset{Ga}{Ga}$$
$$\overset{Faa}{Faa} \quad \overset{Faa}{Faa}$$

Now consider:

$$\forall xGx \supset Hx$$
$$\overset{Ha}{Ga}$$
$$\overset{Faa \land Faa}{Faa \land Faa}$$
$$\overset{3yFay \land Fya}{3yFay \land Fya}$$
$$\overset{\forall x3yFxy \land Fyx}{\forall x3yFxy \land Fyx}$$

This proof illustrates the one shortcoming of the 'tree' proofs in our
system of natural deduction – that of 'sideways spread' as a result
of re-writing a sentence each time it is appealed to as a premiss for
the application of a rule. For example, the sentence Faa is proved 'twice
over' in each of the sub-proofs for proof by cases. But this is a small
price to pay for the undeniable advantage of perspicuity, which tree
proofs enjoy over the linear proofs of other systems. The latter,
because of their complicated marginal annotations, are much more
difficult to take in at a glance.

Consider now the argument

(1) Someone loves everyone
(2) Not everyone loves himself
(3) There are at least two individuals,
one of whom loves the other

Translated into logical notation it becomes

(1) $3x3yLxy$
(2) $\forall xLxx$
(3) $3x3y(\neg x = y \land Lxy)$

We shall provide for this argument three different versions of in-
formal reasoning and the corresponding formal proof which con-
clusively establishes its validity.
Version 111

Someone loves everyone (1). Let a be such an individual. Then in particular \text{Laa}. Since not everyone loves himself (2), it follows that someone does not love himself. Let b be such an individual. Since \text{Laa} and not \text{Lbb}, a is distinct from b. Since also \text{Lab}, it follows that there are at least two individuals, one of whom loves the other.

\[\neg\text{Lcc} \quad \vdash \quad \exists x \neg \text{Lxx} \]
\[\exists x \neg \text{Lxx} \quad \vdash \quad \forall x \text{Lxx} \]
\[\forall x \text{Lxx} \quad \vdash \quad \neg \forall x \text{Lxx} \]
\[\neg \forall x \text{Lxx} \quad \vdash \quad \exists x \neg \text{Lxx} \]
\[\exists x \neg \text{Lxx} \quad \vdash \quad \exists x \exists y (\neg x = y \& \text{Lxy}) \]

This would cast some doubt on Prawitz’s conjecture that two formal proofs (in his system) represent the same process of reasoning if and only if they normalize to the same result. For, Versions 1, 11, and 111 intuitively appear to represent different processes of reasoning, yet, as just remarked, their formalizations in Prawitz’s system normalize to the same result. This is part of the reason why we shall subsequently prove normalization in a different manner from Prawitz, for a classical system with all the logical operators \neg, \forall, \& \&, \exists, and \forall primitive. It remains, of course, as tentative a conjecture as ever that two formal proofs of the system represent the same process of reasoning if and only if they normalize to the same result.

To the best of my knowledge no-one has yet succeeded in counting or classifying distinct proofs (in normal form) of the same conclusion from the same premises. Nor has anyone produced a satisfactory measure of depth of proof, understood as a measure of the profoundness of the process of reasoning which the proof represents. These are two areas where future investigation may yield interesting results.
CHAPTER 5

Propositional metalogic

5.1 Propositional logic vs. first order logic p.88
5.2 Compactness of classical consequence p.89
5.3 Classical completeness via truth sets p.90
5.4 Normalization of proofs p.94
5.5 Classical completeness via disjunctive normal forms p.98
5.6 A direct proof of classical completeness p.101
5.7 Classical completeness via Henkin’s method p.103
5.8 Kripke semantics for intuitionistic logic p.106
5.1 Propositional logic vs. first order logic. Arguments are valid by virtue of the logical structure of their premisses and conclusions. When the logical structure concerned arises from connections rather than quantifications we may talk of propositional arguments. We saw in 2.1 that the validity of the argument

Either someone is rich or everyone is bald
Not everyone is bald

Someone is rich
depends only on connections:

\[
\phi \lor \psi \\
\neg \psi
\]

and that the quantifications did not have to be taken into account when showing that the argument was valid. By contrast the valid argument

Either someone is rich or everyone is bald
Everyone is not bald

Someone is rich
cannot be shown to be valid without revealing at least this much quantificational structure:

\[
\phi \lor \forall x \phi x \\
\forall x \neg \phi x
\]

To prove this argument we have to attend to the logical behaviour of the quantifier 'everyone'. Arguments whose validity or invalidity can be established only by attending to the behaviour of quantifiers are called first order, or quantificational arguments.

In this chapter we shall develop the metatheory of propositional logic, in order to introduce the reader to results that are easier to understand and prove in this simpler setting than are the corresponding results for first order logic.

In propositional logic, as we saw from the example above, the validity (or invalidity) of arguments is due to the structure of connection alone. In our example the sentences 'Someone is rich' and 'Everyone is bald' were not subjected to logical analysis. In the context of the argument they were treated as atoms.

In propositional logic we therefore have the following simplified definition of sentence:

(i) Any atom is a sentence.
(ii) If \(\psi \) and \(\phi \) are sentences then so are \(\neg \psi, \psi \lor \phi, \phi \land \psi \) and \(\psi \Rightarrow \phi \).
(iii) Nothing is a sentence unless its being so follows from (i) and (ii).

We shall use the notation \(A, B, C, \ldots \) for atoms. It will be assumed that the atoms are given in a countably infinite list \(A_0, A_1, A_2, \ldots \).

Exactly what these atoms are is unimportant; all that matters is the logical purpose they serve.

Our analysis of truth conditions is commensurately simplified. As we are no longer enquiring into the structure of quantified or atomic sentences, we discard the detailed account of their truth or falsity depending on the relational structure on a domain of individuals. All we do now to specify a situation or model is specify which atoms are true and which are false.

A truth value assignment assigns to each atom a truth value \(T \) or \(F \). We shall use the notation \(\tau, \rho, \sigma, \ldots \) for truth value assignments. \(\tau(\psi) \), the truth value of a (complex) sentence \(\psi \) under the assignment \(\tau \), is defined inductively in the obvious way:

\[
\begin{align*}
\tau(\neg \psi) & = \neg \tau(\psi) \\
\tau(\psi \lor \phi) & = \tau(\psi) \lor \tau(\phi) \\
\tau(\phi \land \psi) & = \tau(\phi) \land \tau(\psi) \\
\tau(\psi \Rightarrow \phi) & = \neg \tau(\psi) \lor \tau(\phi)
\end{align*}
\]

On the right hand side of these defining equations \(\neg, \lor, \land \) and \(\Rightarrow \) represent the mappings of truth values given by the respective truth tables. If \(\tau(\psi) = T \) we say \(\tau \) satisfies \(\psi \). If \(\tau \) satisfies every member of \(\Lambda \) we say \(\tau \) satisfies \(\Lambda \). \(\psi \) is a logical consequence of \(\Lambda \) \(\Lambda \vdash \psi \) if and only if every assignment which satisfies \(\Lambda \) satisfies \(\psi \). \(\psi \) is a logical truth if and only if every assignment satisfies \(\psi \).

The notions of proof and deductibility are defined by using only the rules of inference for absurdity and the connectives. As in the case of first order logic we may distinguish between intuitionistic and classical logic by reference to the classical rules of negation.

5.2 Compactness of classical consequence. The first result we shall prove is that logical consequence is compact: if \(\psi \) is a logical consequence of \(\Lambda \) then \(\psi \) is a logical consequence of some finite subset of \(\Lambda \).

What we shall actually prove is the following equivalent statement: Compactness Theorem. If every finite subset of \(\Lambda \) is satisfiable then \(\Lambda \) is satisfiable.

(\text{Remember that } \psi \text{ is a logical consequence of } \Lambda \text{ iff } \Lambda \vdash \neg \psi \text{ is not satisfiable.})
Proof. \(\tau_0 \) will be a partial assignment of truth values to just the first \(n \) atoms in the list \(A_0, A_1, A_2, \ldots \) of all atoms. As a special case \(\tau_0 \) is the null assignment. An assignment is total if it assigns every atom a truth value. Our aim is to use the assumption that every finite subset of \(\Delta \) is satisfiable to construct a total assignment which satisfies \(\Delta \). Consider now the property \(P \) of a partial assignment \(\tau \), defined as follows:

\[P(\tau) : \text{For every finite subset } \Phi \text{ of } \Delta \text{ there is a total assignment which agrees with } \tau \text{ on } A_0, A_1, \ldots, A_n, \text{ and satisfies } \Phi. \]

Obviously \(P(\tau_0) \) is the assumption just mentioned. This accomplishes the basis step of our inductive construction of the desired assignment. Now suppose we have constructed \(\tau_n \), so that \(P(\tau_n) \). We show how to construct \(\tau_{n+1} \) so that \(P(\tau_{n+1}) \). Suppose \(\tau(A \cup T) \) has property \(P \); then we take it for \(\tau_{n+1} \). Otherwise we take \(\tau(A \cup F) \), which we now show to have property \(P \); if \(\tau(A \cup T) \) does not:

Since not-\(P(\tau(A \cup T)) \), there is some finite subset \(\Gamma \), of \(\Delta \) which is not satisfied by any total assignment that agrees with \(\tau(A \cup T) \) on \(A_0, A_1, \ldots, A_n \).

Now let \(\Phi \) be an arbitrary finite subset of \(\Delta \). Since \((1 \cup \Phi) \) is finite, by \(P(\tau) \), there is a total assignment \(\tau \) which agrees with \(\tau \) on \(A_0, A_1, \ldots, A_n \), and satisfies \(1 \) and satisfies \(\Phi \). Now suppose for reductio ad absurdum that \(\tau(A \cup T) \neq T \). Then \(\tau \) agrees with \(\tau(A \cup T) \) on \(A_0, A_1, \ldots, A_n \), and satisfies \(1 \) and satisfying \(\Phi \). Now suppose for reductio ad absurdum that \(\tau(A \cup F) \neq F \). Thus \(\tau \) agrees with \(\tau(A \cup F) \) on \(A_0, A_1, \ldots, A_n \), and satisfies \(\Phi \). Hence there is an assignment which agrees with \(\tau(A \cup F) \) on \(A_0, A_1, \ldots, A_n \), and satisfies \(\Phi \). But \(\Phi \) was an arbitrary finite subset of \(\Delta \). Hence for every finite subset \(\Phi \) of \(\Delta \) there is a total assignment that agrees with \(\tau(A \cup F) \) on \(A_0, A_1, \ldots, A_n \), and satisfies \(\Phi \), i.e. \(P(\tau(A \cup F)) \).

We are therefore able to construct a sequence \(\tau_0, \tau_1, \tau_2, \ldots \), where each \(\tau_n \) agrees with \(\tau \) on \(A_0, A_1, \ldots, A_n \), and each \(\tau_n \) has property \(P \). Now let \(\tau \) be the total assignment that agrees with all the \(\tau_n \)'s. We show that \(\tau \) satisfies \(\Delta \). For, let \(\varphi \) be an arbitrary member of \(\Delta \). \(\varphi \) has only finitely many atoms. Suppose \(A_i \) is the last of these to appear in the list. We have \(P(\tau_{i+1}) \), i.e. for every finite subset \(\Phi \) of \(\Delta \) there is a total assignment that agrees with \(\tau_{i+1} \) on \(A_0, A_1, \ldots, A_i \), and satisfies \(\Phi \). Now \(\varphi \) is finite. So there is a total assignment that agrees with \(\tau_{i+1} \) on \(A_0, A_1, \ldots, A_i \), and satisfies \(\Phi \). This assignment assigns to the atoms of \(\varphi \) the same values as does \(\tau_{i+1} \), and therefore the same values as does \(\tau \). Hence \(\tau \) satisfies \(\varphi \).

5.3 Classical completeness via truth sets. In Chapter 2 we saw an example of a meta-deduction of a conclusion of the form \(\varphi \) is true in \(\mathcal{M} \) from the basic information about \(\mathcal{M} \). This deduction used clauses in the definition of satisfaction. In the propositional case we can likewise give examples of meta-deductions of conclusions of the form \(\varphi \) is true/false under \(\tau \) from the basic information about \(\tau \). These deductions would use clauses in the definition of truth.

But in the propositional case the meta-deductions can be mimicked in the object language. For the basic information about any assignment:

\[\tau(A) = T, \quad \tau(B) = F, \text{ etc.} \ldots \]

can be expressed in the object language:

\[A, \quad \neg B, \quad \text{etc.} \ldots \]

and the conclusion

\[\psi \text{ is true under } \tau \]

\[\psi \text{ is false under } \tau \]

can likewise be expressed in the object language:

\[\psi \]

\[\neg \psi \]

Let us define \(\tau \), the truth set of \(\tau \), by the condition:

\[A \in \tau \text{ iff } \tau(A) = T, \quad \neg A \in \tau \text{ iff } \tau(A) = F, \quad \text{and only atoms or negations of atoms occur in } \tau. \]

Implicit in 4.6, where we mimicked the truth tables in intuitionistic logic, is the inductive proof of the following theorem:

Truth Set Theorem

(i) If \(\tau(\varphi) = T \) then \(\tau \vdash \varphi \)

(ii) If \(\tau(\varphi) = F \) then \(\tau \vdash \neg \varphi \)

where \(\vdash \) represents intuitionistic deducibility.

Proof. By induction on \(\varphi \).

Basis. Result obviously holds for atomic \(\varphi \) by definition of \(\tau \).

Inductive step. By cases according to the dominant connective in \(\varphi \).

Case (i): \(\varphi = \neg \psi \)

(i) Suppose \(\tau(\neg \psi) = T \). Then \(\tau(\psi) = F \). By IH(i) \(\tau \vdash \neg \psi \).

(ii) Suppose \(\tau(\neg \psi) = F \). Then \(\tau(\psi) = T \). By IH(i) \(\tau \vdash \psi \). By the proof schema

\[
\begin{array}{c}
\vdash \\
\phi \\
\hline
\neg \psi \\
\hline
\neg \neg \psi
\end{array}
\]

we have \(\tau \vdash \neg (\neg \psi) \).
Case (ii): $\psi = \phi \& \theta$

(1) Suppose $\tau(\phi \& \theta) = T$. Then $\tau(\phi) = T$ and $\tau(\theta) = T$. By IH(1) \(\tau \vdash \phi \) and \(\tau \vdash \theta \). By $\& \vdash \tau \vdash \phi \& \theta$.

(11) Suppose $\tau(\phi \& \theta) = F$. Then $\tau(\phi) = F$ or $\tau(\theta) = F$. Suppose without loss of generality that $\tau(\phi) = F$. By IH(11) \(\tau \vdash \neg \phi \). By virtue of the proof schema

\[
\begin{array}{c}
\text{I} \\
\text{II} \Phi \& \theta \\
\neg \Phi \quad \neg \theta \\
\ast \\
(11) \\
\neg (\phi \& \theta)
\end{array}
\]

we have $\tau \vdash \neg (\phi \& \theta)$.

Case (iii): $\psi = \phi \vee \theta$

(1) Suppose $\tau(\phi \vee \theta) = T$. Then $\tau(\phi) = T$ or $\tau(\theta) = T$. Suppose without loss of generality that $\tau(\phi) = T$. By IH(1) $\tau \vdash \phi$.

(11) Suppose $\tau(\phi \vee \theta) = F$. Then $\tau(\phi) = F$ and $\tau(\theta) = F$. By IH(11) $\tau \vdash \neg \phi$ and $\tau \vdash \neg \theta$. By the proof schema

\[
\begin{array}{c}
\text{I} \\
\text{II} \Phi \vee \theta \\
\neg \Phi \quad \neg \theta \\
\ast \\
(11) \\
\neg (\phi \vee \theta)
\end{array}
\]

we have $\tau \vdash \neg (\phi \vee \theta)$.

Case (iv): $\psi = \phi \supset \theta$

(1) Suppose $\tau(\phi \supset \theta) = T$. Then $\tau(\phi) = F$ or $\tau(\theta) = T$.

Suppose $\tau(\phi) = F$. By IH(11) $\tau \vdash \neg \phi$. By the proof schema

\[
\begin{array}{c}
\text{I} \\
\text{II} \phi \\
\neg \phi \\
\ast \\
(11) \\
\phi \supset \theta
\end{array}
\]

we have $\tau \vdash \phi \supset \theta$.

Now suppose $\tau(\theta) = T$. By IH(1) $\tau \vdash \theta$. By $\supset \vdash \tau \vdash \phi \supset \theta$.

(11) Suppose $\tau(\phi \supset \theta) = F$. Then $\tau(\phi) = T$ and $\tau(\theta) = F$. By IH(1) $\tau \vdash \phi$ and by IH(11) $\tau \vdash \neg \theta$. By the proof schema

\[
\begin{array}{c}
\text{I} \\
\text{II} \Phi \supset \theta \\
\neg \Phi \quad \neg \theta \\
\ast \\
(11) \\
\phi \supset \theta
\end{array}
\]

we have $\tau \vdash \phi \supset \theta$.

Note that the proof schemata displayed in the inductive step correspond to the 'non-trivial' proofs displayed in 4.6, where we mimicked the truth tables. An inspection of our proof of the last theorem reveals that the proofs of ψ or $\neg \psi$ from τ involve as premises only such atoms or negations of such atoms as occur in ψ itself.

Thus the theorem holds with τ_ψ in place of τ, where τ_ψ is defined in the obvious way by including the condition that the atoms involved occur in ψ. The ability thus to 'decide' by means of our rules of inference whether a given sentence ϕ is true or false given the truth value of each atom in ϕ suggests that the rules are powerful enough to prove any valid argument. We have not yet, however, appealed to the classical negation rules. Indeed, classical completeness follows from the Truth Set Theorem only after the following lemma, whose proof appeals conspicuously to the presence of the rule of dilemma.

A truth set over a set of atoms contains, for each A in that set exactly one of A or $\neg A$, and nothing else. Henceforth τ represents classical deducibility.

Lemma on Dilemma. If $\Delta \vdash \psi$ then for any finite set \mathcal{A} of atoms occurring in $\{ \Delta, \psi \}$ there is some truth set θ over \mathcal{A} such that $\Delta, \theta \vdash \psi$.

Proof. By induction on the number of atoms in \mathcal{A}, given the hypothesis of the Lemma.

Basis. Suppose $\mathcal{A} = \emptyset$. Then \emptyset is a truth set over \mathcal{A} and $\Delta, \emptyset \vdash \psi$.

Induction step. Suppose $\mathcal{A} = \{ A_1, \ldots, A_n \}$. By inductive hypothesis let θ be a truth set over $\{ A_1, \ldots, A_{n-1} \}$ such that $\Delta, \theta \vdash \psi$. If $\Delta, \theta, A_n \vdash \psi$ then by dilemma $\Delta, \theta \vdash \psi$. So either $\Delta, \theta, A_n \vdash \psi$ or $\Delta, \theta, \neg A_n \vdash \psi$. (\(\theta, A_n \)) and (\(\theta, \neg A_n \)) are the required truth sets respectively.

Completeness Theorem (Weak Version). If $\Delta \vdash \psi$ and only finitely many atoms occur in $\{ \Delta, \psi \}$ then $\Delta \vdash \psi$.

Proof. Suppose only finitely many atoms occur in $\{ \Delta, \psi \}$ and $\Delta \vdash \psi$. We show $\Delta \vdash \psi$. By the preceding lemma let θ be a truth set over the finitely many atoms concerned, such that $\Delta, \theta \vdash \psi$. Define τ by the condition $\tau(A) = T$ iff $A \in \theta$. We show τ satisfies Δ but not ψ. Let ϕ be an arbitrary member of Λ. Suppose for reductio ad absurdum
that \(\tau(\psi) = F \). By the truth set theorem \(\Theta \vdash \phi \), whence \(\Delta, \Theta \vdash \psi \) and \(\Delta, \Theta \vdash \phi \). But \(\Delta, \Theta \vdash \psi \). Thus \(\tau(\phi) = T \). Moreover, since \(\Delta, \Theta \vdash \psi \), certainly \(\Theta \vdash \psi \); hence by the truth set theorem \(\tau(\phi) = T \).

Completeness Theorem (Strong Version). If \(\Delta \vdash \psi \) then \(\Delta \vdash \phi \).

Proof. Suppose \(\Delta \vdash \psi \). By compactness \(\psi \) is a logical consequence of a finite subset of \(\Delta \), which obviously involves only finitely many atoms. By the preceding theorem \(\Delta \vdash \psi \).

5.4 Normalization of proofs.

By means of the transformation

\[
\begin{array}{c}
\phi \\
\hline
\psi
\end{array}
\quad
\begin{array}{c}
\psi \\
\hline
\neg \phi
\end{array}
\quad
\begin{array}{c}
\neg \phi \\
\hline
\psi
\end{array}
\]

\[
\begin{array}{c}
\neg \psi \\
\hline
\psi
\end{array}
\quad
\begin{array}{c}
\psi \\
\hline
\neg \psi
\end{array}
\]

all applications of dilemma may be driven downwards so that any proof of \(\psi \) can be turned into one in which all applications of dilemma have \(\psi \) as conclusion. This leads to the following result.

Inconsistency Theorem. If \(\Delta \vdash \ast \) then \(\Delta \vdash \ast \).

Proof. Take a proof of \(\ast \) from \(\Delta \) in which all applications of dilemma have been driven downwards so as to have \(\ast \) as conclusion. Now the schema

\[
\begin{array}{c}
\psi \\
\hline
\neg \phi
\end{array}
\]

\[
\begin{array}{c}
\phi \\
\hline
\neg \psi
\end{array}
\]

\[
\begin{array}{c}
\neg \psi \\
\hline
\psi
\end{array}
\]

\[
\begin{array}{c}
\psi \\
\hline
\neg \phi
\end{array}
\]

is intuitionistically derivable:

\[
\begin{array}{c}
\neg \phi \\
\hline
\psi
\end{array}
\]

\[
\begin{array}{c}
\phi \\
\hline
\neg \psi
\end{array}
\]

Therefore by replacing all applications of the former by applications of the latter we obtain an intuitionistic proof of \(\ast \) from \(\Delta \).

Note that we have proved the inconsistency theorem only for *propositional* logic. It does not hold for first order logic.

In applications of dilemma:
This indeed is a special case of the following more general reduction procedure that applies to any maximal ψ-constellation.

The general reduction procedure is applied within a proof to a fragment of the form

\[
\phi \quad \Sigma_1 \ldots \Sigma_n (E) \\
\phi
\]

in which the indicated ψ-constellation is maximal. The procedure is in four stages.

1. Take in turn each unwanted occurrence of ψ standing as the conclusion of some \(\Pi_i\). Replace \(\Pi_i\) by \(\psi(\Pi_i, \Sigma)\).

2. Take in turn every other topmost occurrence of ψ standing as the conclusion of some \(\Pi_i\). Replace \(\Pi_i\) by

\[
\phi \quad \Sigma_1 \ldots \Sigma_n \\
\psi
\]

3. Replace all remaining occurrences of ψ in the constellation by occurrences of \(\phi\). Note that all applications of \(\vee-E\) and dilemma within the whole proof remain correct.

4. Take as result the fragment terminating with the occurrence of \(\phi\) which replaced the bottommost occurrence of ψ in the old constellation.

The height of a ψ-constellation within a proof is determined as the length of the branch running from the conclusion of the proof to the bottommost occurrence of ψ in the constellation. The degree of a ψ-constellation is that of ψ, that is the number of occurrences of connectives in ψ. The degree of a proof is the maximum degree of its maximal constellations. The index of a proof is the number of maximal constellations of maximum degree within the proof. The order of a proof is the ordered pair (degree, index). Orders can be well-ordered in the obvious way.

For the purposes of normalizing proofs, the order of a proof is a well-founded measure of its abnormality. How abnormal a proof is will be determined firstly by its degree (the maximum degree of its maximal constellations) and secondly by how many maximal constellations of maximum degree there are.

Application of our general reduction procedure to any maximal constellation of maximum degree occurring no lower than any such
other within a proof obviously reduces the order of a proof. This is because no proof tree can contain a fragment of the form

\[
\alpha \wedge \beta \rightarrow \gamma
\]

with \(\alpha \) and \(\beta \) distinct but of the same degree. Thus, by well-ordering of orders, only finitely many reductions are needed before no further reductions can be applied. The resulting proof is said to be in normal form. We have therefore established the following result.

Normalization Theorem. Any proof of \(\varphi \) from \(\Delta \) can be effectively transformed into one in normal form. The latter is a proof of \(\varphi \) from a subset of \(\Delta \). If it is classical, then applications of dilemma discharge only atomic sentences.

5.5 Classical completeness via disjunctive normal forms

Suppose the sentence \(\varphi \) involves just the atoms \(A_1, \ldots, A_n \). Suppose we do not know how \(\varphi \) has been built up from those atoms, but are told only what truth value \(\varphi \) has under each of the \(2^n \) possible assignments of truth values to \(A_1, \ldots, A_n \). Then we can find a sentence \(\psi \) involving just those atoms that is logically equivalent to \(\varphi \). We do so as follows.

First look at each row in the truth table for \(\varphi \) in which \(\varphi \) has value \(T \). For each \(A \), write down \(\neg A \) if \(A \) has value \(T \) in that row, but write down \(\neg A \) if \(A \) has value \(F \). Form the \(n \)-fold conjunction of what you have written down: that is, form the conjunction of all the members of the truth set of the assignment given by that row. When you have obtained in this way a conjunction for each row in which \(\varphi \) has value \(T \), form the disjunction of those conjunctions. This disjunction is easily seen to have the same truth value as \(\varphi \) in every row of the truth table.

A more concise description of the procedure is as follows. For each assignment \(\tau \) under which \(\varphi \) is true, form the conjunction of all the members of \(\tau \). Then form the disjunction of those conjunctions. The result is logically equivalent to \(\varphi \). If \(\varphi \) has value \(F \) in every row, simply take \(A_1 \wedge \cdots \wedge A_n \), the disjunctive normal form.

Example. Suppose \(\varphi \) involves just the atoms \(A, B, \) and \(C \) and has the following truth table. We find \(\varphi \) as indicated:

\[
\begin{array}{cccc}
A & B & C & \varphi \\
T & T & T & F \\
T & T & F & (A \wedge B \wedge \neg C) \\
T & F & T & (A \wedge \neg B \wedge C) \\
T & F & F & (A \wedge B \wedge C) \\
F & T & T & (\neg A \wedge B \wedge C) \\
F & T & F & (A \wedge B \wedge C) \\
F & F & T & (A \wedge B \wedge C) \\
F & F & F & (A \wedge B \wedge C) \\
\end{array}
\]

What we have established is the semantical equivalence of any sentence with some sentence having the form of a disjunction of conjunctions of atoms and negations of atoms. Sentences of this form are said to be in disjunctive normal form. What we wish now to establish, without appealing to completeness, is that any sentence is classically interdeducible with some sentence in disjunctive normal form.

First let us define precisely what it is for a sentence to be in disjunctive normal form.

(i) Any atom is a basic conjunction.
(ii) The negation of any atom is a basic conjunction.
(iii) If \(\varphi \) and \(\psi \) are basic conjunctions then so is \((\varphi \wedge \psi) \).
(iv) Any basic conjunction is a dnf.
(v) If \(\varphi \) and \(\psi \) are dnf's then so is \((\varphi \vee \psi) \).
(vi) Nothing is a basic conjunction or dnf unless its being so follows from (i)-(v).

A basic conjunction \(\varphi \) is maximal in a dnf \(\psi \) iff: \(\varphi \) is a subformula of \(\psi \), but not of any other basic conjunction that is a subformula of \(\psi \).

DNF Lemma 1. If \(\varphi \) and \(\psi \) are dnf's then \((\varphi \wedge \psi) \) is interdeducible with some dnf.

Proof. By induction on the combined degree of \(\varphi \) and \(\psi \).

Basis. If \(\varphi \) and \(\psi \) are atoms then \((\varphi \wedge \psi) \) is a dnf by (i), (iii) and (iv).

Inductive step. If \(\varphi \) and \(\psi \) are basic conjunctions then \((\varphi \wedge \psi) \) is a dnf by (iii) and (iv). If \(\varphi \) is not a basic conjunction then it is of the form \(\chi \vee \eta \) where \(\chi \) and \(\eta \) are dnf's. Now \((\chi \vee \eta) \wedge \psi \wedge (\chi \wedge \psi) \wedge (\eta \wedge \psi) \)...

By IH \((\chi \wedge \psi) \) is interdeducible with some dnf, and \((\eta \wedge \psi) \) is interdeducible with some dnf. Thus \((\chi \wedge \psi) \vee (\eta \wedge \psi) \) is interdeducible with a disjunction of dnf's, which by (v) is a dnf. Thus by (1) \((\chi \vee \eta) \wedge \psi \) is interdeducible with some dnf. The reasoning is similar if \(\psi \) is not a basic conjunction.

DNF Lemma 2. If \(\varphi \) is a dnf then \(\neg \varphi \) is interdeducible with some dnf.

Proof. By induction on \(\varphi \). Note that
vide methods of finding propositional proofs of valid arguments with finitely many premises. These methods are implicit in the inductions involved in establishing the results.

5.6 A direct proof of classical completeness. If, however, the reader were to try for himself to find a proof of a valid argument from finitely many premises by following either of these methods he would follow a lengthy and roundabout route to a proof that is likely to be highly 'non-normal'. It is therefore worth providing here another constructive completeness proof, establishing directly that

and encoding a method for finding proofs that parallels as closely as possible the sensible method that a competent user of the proof system is likely to employ in his search for a proof. This is the method of 'breaking down' the premises and conclusion and accordingly 'breaking down' the problem of finding a proof into further subproblems of finding appropriate subproofs. For economy and novelty we confine our third constructive completeness proof to the system based on Sheffer's stroke.

First we define the degree of a sentence as follows.

(i) \(d(\theta) = 0 \)
(ii) \(d(\phi \lor \psi) = 1 + d(\phi) \)
(iii) \(d(\phi \land \psi) = \max(\max(d(\phi), d(\psi)), 0) \)

Let \(\Delta \) be a finite set of sentences which does not contain \(\theta \). Then \(\Delta \Delta = 0 \) if \(\Delta \) is empty, and is \(max(d(\theta), d(\phi) \in \Delta) \) otherwise. \(\mu \) is the number of sentences of maximum degree in \(\Delta \). Let \(\theta \) be a mapping that assigns to \(\Delta \) a sentence of maximum degree in \(\Delta \) that is of the form \(\phi \lor \theta \), and \(\Delta \theta = \Delta \theta \lor \theta \). Note that \(\Delta \Delta \leq \Delta \). Now define a well-founded relation \(\prec \) between finite arguments as follows: \(\Gamma \phi < \Delta \phi \) if and only if either (i) \(\Delta \phi \leq \Delta \phi \lor \theta \), or (ii) \(\Delta \phi \leq \Delta \phi \lor \theta \), or (iii) \(\Delta \phi \leq \Delta \phi \lor \theta \), and \(d(\phi) = d(\phi) \).

For the purposes of our inductive proof which follows we may consider \(\Gamma \phi < \Delta \phi \) as \(\Gamma \phi \leq \Delta \phi \) is a less complex argument than \(\Delta \phi \). Our definition establishes that complexity is determined, in order of importance, by (i) overall maximum degree of sentences involved, (ii) degree of the conclusion, and (iii) number of premises of maximum degree. Note that the least complex arguments are of the form \(\theta / \Delta \), with \(\Delta \) atomic. The following Lemma shows how to break an argument down to less complex arguments.
Complexity Lemma
(i) If $\varphi = \psi \theta$ then $(\Delta, \psi, \theta) < (\Delta, \varphi, \theta)$
(ii) If $+\Delta = \psi \theta, \varphi \neq \theta$, then $(\Delta, \psi, \theta) / \varphi < \Delta / \varphi$
(iii) If $+\Delta = (\psi \theta) \{(\psi \theta) \varphi \}$ then $(\Delta, \psi, \theta) / \varphi < \Delta / \varphi$

Proof: (i) by (i) if $\delta \Delta < d\varphi$
by (ii) if $\delta \Delta > d\varphi$
by (iii) if $\delta \Delta = d\delta$

We are now in a position to prove another version of weak completeness.
Theorem. For finite Δ, if $\Delta \vdash \varphi$ then $\Delta \vdash \varphi$.
Proof: By induction on the well-founded relation defined above.
Basis. Obvious, since every atomic sentence can be falsified.
Inductive step. We consider Δ / φ according to the following cases:

(i) $\varphi = \psi \theta$
(ii) $+\Delta = \psi \theta, \varphi \neq \theta$
(iii) $+\Delta = (\psi \theta) \{(\psi \theta) \varphi \}$
(iv) Δ non-empty with every member of the form $A \lor \neg A$
(A atomic) and $d\varphi = 0$.

These cases are not mutually exclusive, but they are exhaustive, which is all we need for proof by cases.
Suppose $\Delta \vdash \varphi$. We show in cases (i) – (iv) that $\Delta \vdash \varphi$, given the inductive hypothesis that this result holds for less complex arguments.
Case (i). By the truth table $\Delta, \psi, \theta \vdash \varphi$. By Complexity Lemma (i) and IH $\Delta, \psi, \theta \vdash \varphi$.

Case (ii). By the truth table $\Delta, \psi \varphi \varphi$ and $\Delta, \theta \varphi \varphi$. By Complexity Lemma (iii) and IH $\Delta, \psi \varphi \varphi$ and $\Delta, \theta \varphi \varphi$. By the proof schema

$\Delta, \psi \varphi \varphi$
$\Delta, \theta \varphi \varphi$
$\Delta, \theta \varphi \varphi$

we have $\Delta \vdash \varphi$.

Case (iii). By truth table $\Delta, \psi, \theta \vdash \varphi$. By Complexity Lemma (i) and IH $\Delta, \psi, \theta \vdash \varphi$. By the proof schema

we have $\Delta \vdash \varphi$.

Case (iv). Either $\varphi \in \Delta$ or for some atomic $B \in \Delta$ and $B \varphi \varphi \in \Delta$. If $\varphi \in \Delta$ then obviously $\Delta \vdash \varphi$. If $B, B \varphi \varphi \in \Delta$ then, according as φ is \ast or not, by the proofs

we have $\Delta \vdash \varphi$.

5.7 Classical completeness via Henkin’s method. Our three constructive proofs of completeness of classical logic establish only weak completeness:

for finite Δ, if $\Delta \vdash \varphi$ then $\Delta \vdash \varphi$.

We have an independent proof of the compactness theorem:

if $\Delta \vdash \varphi$ then for some finite $\Gamma \subseteq \Delta$, $\Gamma \vdash \varphi$.

Combining these two results we obtain strong completeness:

for all Δ if $\Delta \vdash \varphi$ then $\Delta \vdash \varphi$.

There is, however, a method of proving compactness and strong completeness simultaneously, due to Henkin. Henkin’s method does not intrinsically codify a way of finding a proof of φ from finite Δ given that φ is a logical consequence of Δ. By contrast the constructive methods do more. They enable us to decide in general whether φ is a logical consequence of Δ, and, if so, to provide a proof. The disadvantage of the ‘non-constructiveness’ of Henkin’s method is, however, outweighed by its elegance and the fact that it can be used to prove completeness of first order logic (for which constructive proofs of completeness are impossible). It is therefore worth illustrating Henkin’s method in the simpler setting of propositional logic.

By a maximal consistent set of sentences I shall mean a set Δ with
the following properties: (1) $\Delta, \psi \vdash \varphi$ (\(\lambda\) is consistent), and (2) for all \(\varphi\), \(\psi \in \Delta\) or \((\neg \varphi) \in \Delta\) \((\lambda\) is maximal). \(\lambda\) maximal consistent set obviously has the closure property (3) for all \(\varphi\) if \(\Delta, \psi \vdash \varphi\) then \(\varphi \in \Delta\).

Henkin's method' has two stages. First one shows that every consistent set can be consistently maximized. Secondly one shows that any maximal consistent set is satisfiable by a naturally definable truth value assignment. This is done by the following two theorems.

Maximization Theorem. If \(\Delta \vdash \varphi\) then \(\Delta\) is contained in some maximal consistent set.

Satisfiability Theorem. Every maximal consistent set is satisfiable.

Completeness follows immediately from these two theorems. For, if \(\Delta \vdash \varphi\) then \((\lambda, \varphi)\) is not satisfiable. Hence \(\Delta, \neg \varphi \vdash \varphi\). Thus by classical reductio \(\Delta, \neg \varphi \vdash \varphi\). Compactness of \(\vdash\) follows from the obvious compactness of \(\vdash\).

Proof of Maximation Theorem. Suppose \(\Delta \vdash \varphi\). (Throughout this proof and the next \(\vdash\) will mean \(\vdash_{r}\).) Let \(\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\) be a list of all sentences. Inductively define a sequence \(\Delta_{0}, \Delta_{1}, \Delta_{2}, \ldots\) of sets of sentences as follows.

\[
\begin{align*}
\Delta_{0} &= \Delta \\
\Delta_{n+1} &= \Delta_{n} \varphi_{n}, & \text{if } \Delta_{n} \varphi_{n} \vdash \varphi; \\
&= \Delta_{n} \varphi_{n}, & \text{if } \Delta_{n} \varphi_{n} \vdash \varphi \star
\end{align*}
\]

Obviously if \(\Delta_{n}\) is consistent then so is \(\Delta_{n+1}\). Moreover \(\Delta_{0}\) is consistent. Thus by induction for all \(n\), \(\Delta_{n}\) is consistent (0). Now let \(\lambda\) be a \(\varphi_{i}\) of \(\lambda\). Obviously \(\lambda\) is contained in \(\lambda\). First we show that \(\lambda\) is consistent:

For, suppose \(\lambda \vdash \star\). Then there is a proof of \(\star\) from finitely many premises in \(\lambda\). Some \(\lambda\) contains all these and is therefore inconsistent, contrary to (0) above. Thus \(\lambda \vdash \star\).

Secondly we show that \(\lambda\) is maximal:

For, suppose neither \(\varphi\) nor \(\neg \varphi\) is in \(\lambda\). Let \(\varphi\) occur in our list as \(\varphi_{i}\) and let \(\neg \varphi\) occur as \(\varphi_{i}\). Since \(\varphi_{i}\) is not in \(\lambda\), it is not in \(\lambda_{i+1}\), which therefore cannot be \(\lambda_{i}, \varphi_{i}\), whence the latter is inconsistent. Similarly \(\lambda_{i}, \varphi_{i}\) is inconsistent. Let \(m = \max (i, j)\).

We have \(\lambda_{m}, \varphi \vdash \star\) and \(\lambda_{m}, \neg \varphi \vdash \star\). By the proof schema

\[
\begin{align*}
\lambda_{m}, \varphi &\vdash \star \\
\lambda_{m}, \neg \varphi &\vdash \star
\end{align*}
\]

we have \(\lambda \vdash \varphi \neg \varphi\), contrary to (0). Thus for all \(\varphi\) either \(\varphi \in \lambda\) or \(\neg \varphi \in \lambda\).

Proof of Satisfiability Theorem. Let \(\lambda\) be a maximal consistent set of sentences. Define a natural truth value assignment \(\tau\) by the condition that \(\tau(\Delta) = T\) if and only if \(\Delta \in \lambda\). This accomplishes the basis of an inductive proof that \(\tau(\varphi) = T\) if and only if \(\varphi \in \lambda\). In the inductive step we consider \(\varphi\) by cases.

Case (i): \(\varphi = \neg \varphi\). Suppose \(\tau(\neg \varphi) = T\). Then \(\tau(\neg \varphi) = F\). By IH \(\varphi \in \lambda\). By maximality \((\neg \varphi) \in \lambda\). Conversely suppose \((\neg \varphi) \in \lambda\). By consistency \(\varphi \in \lambda\). By IH \(\tau(\varphi) = F\). Thus \(\tau(\neg \varphi) = T\).

Case (ii): \(\varphi = \varphi \& \theta\). Suppose \(\tau(\varphi \& \theta) = T\). Then \(\tau(\varphi) = T\) and \(\tau(\theta) = T\). By IH \(\varphi \in \lambda\) and \(\theta \in \lambda\). By \(\&-I \Delta \vdash \varphi \& \theta\). By closure \(\varphi \& \theta \in \lambda\). Conversely, suppose \(\varphi \& \theta \in \lambda\). By \(\&-E \Delta \vdash \varphi\) and \(\Delta \vdash \theta\). By closure \(\varphi \in \lambda\) and \(\theta \in \lambda\). By IH \(\tau(\varphi) = T\) and \(\tau(\theta) = T\). Thus \(\tau(\varphi \& \theta) = T\).

Case (iii): \(\varphi = \varphi \lor \theta\). Suppose \(\tau(\varphi \lor \theta) = T\). Then \(\tau(\varphi) = T\) or \(\tau(\theta) = T\). Suppose \(\tau(\varphi) = T\). By IH \(\varphi \in \lambda\). By \(\lor-I \Delta \vdash \varphi \lor \theta\). By closure \(\varphi \lor \theta \in \lambda\). Similarly if \(\tau(\theta) = T\) then \(\varphi \lor \theta \in \lambda\). Conversely, suppose \(\varphi \lor \theta \in \lambda\). If \((\neg \varphi) \in \lambda\) then \(\neg \varphi \in \lambda\) and \(\varphi \lor \theta \in \lambda\). By \(\neg-IE \Delta \vdash \varphi \lor \theta\). By closure \(\varphi \lor \theta \in \lambda\).

Case (iv): \(\varphi \Rightarrow \theta\). Suppose \(\tau(\varphi \Rightarrow \theta) = T\). Then either \(\tau(\varphi) = F\) or \(\tau(\theta) = T\). Suppose \(\varphi = F\). By IH \(\varphi \in \lambda\). By maximality \((\neg \varphi) \in \lambda\). By the proof

\[
\begin{align*}
\varphi &\vdash \neg \varphi \\
\neg \varphi &\vdash \theta
\end{align*}
\]

we have \(\varphi \Rightarrow \theta\). By closure \(\varphi \Rightarrow \theta \in \lambda\).
\[
\frac{\psi \quad \psi \Rightarrow \theta}{\theta} \quad \sim \theta
\]

we have \(\Lambda \vdash \Diamond \), contrary to assumption. So either \(\psi \in \Lambda \) or \(\sim \theta \not\in \Lambda \).

If \(\psi \in \Lambda \) then by IH \(\tau(\psi) = F \) whence \(\tau(\psi \Rightarrow \theta) = T \). If \(\sim \theta \not\in \Lambda \) then by maximality \(\theta \in \Lambda \), whence by IH \(\tau(\theta) = T \) and so \(\tau(\psi \Rightarrow \theta) = T \).

We have a new proof of the Inconsistency Theorem as a corollary to the Maximalization and Satisfiability Theorems. Suppose \(\Lambda \vdash \Diamond \).

By soundness \(\Lambda \) is not satisfiable. Hence \(\Lambda \) is not contained in any maximal consistent set. Hence \(\Lambda \vdash \Diamond \).

\[\sim \sim \theta\] is called the \textit{double negation} of \(\theta \). Let \(\sim \sim \Lambda \) be the set of double negations of members of \(\Lambda \).

\textit{Double Negation Theorem}. If \(\Lambda \vdash \Diamond \) then \(\sim \sim \Lambda \vdash \sim \sim \theta \).

\textit{Proof}. Suppose \(\Lambda \vdash \Diamond \). Then \(\sim \sim \Lambda \vdash \Diamond \). Thus \(\sim \sim \Lambda, \sim \theta \vdash \Diamond \). By the Inconsistency Theorem \(\sim \sim \Lambda, \sim \theta \vdash \Diamond \). Hence \(\sim \sim \Lambda \vdash \sim \sim \theta \).

5.8 \textbf{Kripke semantics for intuitionistic logic.} Formally, the semantics for classical propositional logic is an algebra of truth functions over the set of two truth values \(T \) and \(F \). It arises naturally from the philosophical assumption that every sentence is either true or false in any situation in which it is interpreted. Chapter 3 contained an exposition of classical first order semantics. We have yet to indicate how classical semantics differs from intuitionistic semantics. Indeed, whether there is any such thing as a satisfactory intuitionistic 'semantics' or whether, intuitionistically, there is any need for such a thing, is a question that raises considerable difficulties.

There are two senses of 'semantics' that it may be useful to distinguish. To each corresponds a different purpose in the project of providing a semantics for a language (endowed, perhaps, with a deductive system).

The first, which I shall call the \textit{philosophical} sense, is the sense in which the semantics yields an explication of the truth conditions (for a particular conception of truth) of sentences of the language. A fundamental feature of such a semantics will be an account of the structure of reality, the form of world, of which the language may intelligibly speak. In the absence of such an account we need an argument justifying its omission, and an alternative account of what it is that makes language intelligible. Philosophical semantics would be integrated into general theories of meaning and ontology.

The second sense of 'semantics' I shall call the \textit{algebraic} sense. In algebraic semantics we are concerned to define a suitable class of algebras, and a relation \(\rho \) between them and sentences of the lan-

guage, so that we may define a conclusion to be a logical consequence of certain premises if and only if every algebra bearing the relation \(\rho \) to all the premises bears the relation \(\rho \) to the conclusion. We then try to establish soundness and completeness theorems showing that this consequence relation coincides exactly with some independently defined deducibility relation. Thus if we can find an algebra bearing relation \(\rho \) to all the premises in \(\Lambda \) but not to the conclusion \(\phi \) we know that \(\phi \) cannot be deduced from \(\Lambda \) (soundness); and if \(\phi \) cannot be deduced from \(\Lambda \) we do not have to survey all possible proofs to establish this, but can instead find some counterexample algebra as above (completeness). Initially, therefore, algebraic semantics provides no more nor less than necessary and sufficient conditions for deducibility.

It would, however, be a further mark in favour of a particular algebraic semantics if it incorporated in some recognizable and natural way the essential features of the preferred philosophical semantics. This would both help us understand why the completeness theorem held for the algebraic semantics, and would sharpen our intuitions in searches for counterexample algebras to invalid arguments. Moreover, it would serve to highlight any source of difficulty, obscurity or complexity in the philosophical semantics itself.

In classical semantics as set forth in Chapter 3 we have a paradigm of this algebraic encapsulation of the results of philosophical analysis. Whether the same can be said for extant intuitionistic semantics of the algebraic kind is less certain. In this section I shall set forth the best known of these, due to Kripke, and shall prove some results that may be of help in assessing how well it models intuitionistic truth conditions (or, as some may say, assertability conditions). The reader is reminded that we are dealing with the propositional case only.

A \textit{sentence} \(\phi \) is intuitionistically true, or assertable, just in case one has, or possesses an effective means for finding, a \textit{canonical proof} of \(\phi \) from present \textit{atomic knowns}. An \textit{atomic known} is either an atomic axiom (an atomic sentence assertable outright) such as \(t = t \), or a rule of inference involving only atomic sentences, such as \(t + 1 = u + 1 \) or \(0 = 1 \). A \textit{proof} of \(\phi \) is an argument that can be effectively transformed into a \textit{canonical proof} of \(\phi \); where a canonical proof of

(i) an atomic sentence is one built up from the atomic knowns
(ii) \(\sim \phi \) consists in a method that, applied to any proof of \(\phi \), would yield a proof of absurdity
(iii) \(\phi \& \theta \) consists in a proof of \(\phi \) and a proof of \(\theta \)
Blending these ingredients we write \(K = (\{ \mathfrak{d} \mid i \in I \}, \triangleright) \). We shall define \(\lnot \varphi \) as \(\varphi \quad \lnot \) so that \(\lor, \land \) and \(\lnot \) are our primitive connectives.

Given \(i \in I \) we now define what it is for \(i \) to force \(\varphi \) within \(K \):

\[
(1) \quad i \models A \quad \text{iff} \quad A \in j \quad (\text{for } A \text{ atomic})
\]

\[
(2) \quad i \models \varphi \lor \psi \quad \text{iff} \quad \text{either } i \models \varphi \text{ or } i \models \psi
\]

\[
(3) \quad i \models \varphi \land \psi \quad \text{iff} \quad i \models \varphi \land i \models \psi
\]

\[
(4) \quad i \models \varphi \lnot \psi \quad \text{iff} \quad \text{for all } j \triangleright i, \text{ if } j \triangleright \varphi \text{ then } j \not\models \psi [i \models \varphi]
\]

Subsequently the model \(K \) determining \(\models \) and \([] \) must be understood from the context.

Given a set \(\Delta \) we define \(\Delta_\ast \), the atomic closure of \(\Delta \), to be the set of all atomic sentences intuitionistically deducible from \(\Delta \). Henceforth \(\models \) represents intuitionistic deducibility.

A set \(\Delta \) is intuitionistic if and only if it satisfies the following three conditions:

\[
(1) \quad \Delta \not\models \ast \quad (\Delta \text{ is consistent})
\]

\[
(2) \quad \text{for all } \varphi, \text{ if } \Delta \models \varphi \text{ then } \varphi \Delta_\ast \quad (\Delta \text{ is closed})
\]

\[
(3) \quad \text{for all } \varphi, \psi, \text{ if } (\varphi \lor \psi) \Delta_\ast \text{ then either } \varphi \Delta_\ast \text{ or } \psi \Delta_\ast \quad (\Delta \text{ is disjunctive})
\]

Note that atomic axioms are simply atomic rules with no premises. If \(R \) is a collection of finitary atomic rules we shall let \(\mathfrak{g}_R \) and \(\mathfrak{h}_R \) be the notions of proof and deducibility that result from augmenting the stock of intuitionistic rules of inference by \(R \). \(R \)-intuitionistic sets are defined as above with \(\mathfrak{h}_R \) in place of \(\models \). There are corresponding obvious definitions of \(R \)-consistency, \(R \)-closure, etc.

Let \(I_\ast \) be the set of all \(R \)-intuitionistic sets. Define \(\preceq \) to be the subset relation, which is obviously a partial ordering. Note that if \(\Delta \preceq \Gamma \) then \(\Delta \subseteq \Gamma \) but not conversely; for we can have two partially overlapping intuitionistic sets (differing with respect to the implications they contain) with a common atomic closure. Let \(I_\ast \), the \textit{natural model for } \(R \), be the Kripke model \((\{ \mathfrak{d} \mid \Delta \models I_\ast \}, \triangleright) \). Here the mapping \([] \) within the natural model simply assigns to each \(R \)-intuitionistic set (as index) its own atomic \(R \)-closure.

Within any Kripke model \(K \) let us define \(\Delta \models_R \varphi \) to mean that for all \(j \triangleright i \), if \(\Delta \models [j] \) then \(\varphi \models [j] \). Intuitively this means that from the index \(I \) onward within \(K \) as soon as all the members of \(\Delta \) are forced, \(\varphi \) is forced also. We may read \(\Delta \models_R \varphi \) as \(\Delta \) forces \(\varphi \) by \(i \). We shall say that an atomic rule holds at \(i \) or that \(i \) admits the rule, if and only if its premises force its conclusion by \(i \). Note that if \(i \) admits a rule and \(j \triangleright i \) then \(j \) admits that rule. It is obvious that any index in the natural model for \(R \) admits all the rules in \(R \). The following statements are also clearly equivalent:
(i) for all K, for all i in K admitting R, if $\Delta \subseteq \{i\}$ then $\varphi \in \{i\}$
(ii) for all K, for all i in K admitting R, $\Delta \vdash \varphi$

We shall use the common abbreviation $\Delta \vartriangleleft \varphi$, and say φ is an R-consequence of Δ. This is the semantical notion of consequence which we hope to match with R-deducibility by means of soundness and completeness results.

Eternity Lemma. In any Kripke model if $j \supseteq i$ then $\{i\} \subseteq \{j\}$ (intuitively, "once forced, always forced").

Proof. By induction on φ, assuming $i \not\vdash \varphi$.

Basis. If φ is atomic the result is immediate from the conditions on Δ.

Inductive step. Consider φ by cases. Suppose $j \supseteq i$. For $\varphi \equiv (\varphi \lor \theta)$ or $(\varphi \land \theta)$ the result is immediate by IH and the definition of forcing. So suppose $\varphi \equiv (\varphi \lor \theta)$. Suppose $k \supseteq j$ and $k \not\vdash \varphi$. Then $k \supseteq i$ whence, since $i \not\vdash \varphi \lor \theta$, $k \not\vdash \theta$. Thus $j \not\vdash \varphi \lor \theta$.

Soundness Theorem. If $\Delta \vdash \{i\}$, φ, Δ then for any Kripke model K and any i in K admitting all the rules in R, $\Delta \vdash \varphi$.

Proof. By induction on Π.

Basis. Obvious.

Inductive step. Suppose $\Delta \vdash \{i\}$, φ, Δ. Consider Π by cases according to the rule of inference last applied in Π. The reasoning in the case of the absurdity rule, \Box-I, \Box-E, \lor-I, and \lor-E is trivial. So we consider only the cases where the rule last applied in Π is (i) \Box-I, (ii) \lor-E or (iii) a rule in R.

(i) Π is $\Box \varphi$ where $\Delta = \Gamma \vdash \varphi$.

(ii) Π is $\{\varphi\}$ where $\Delta = \Gamma \lor (\Gamma \lor \varphi)$.

(iii) Π is $\{\varphi\}$, $\{\theta\}$ where $\Delta = \Gamma \lor (\Gamma \lor \varphi)$.

Suppose $\Delta \subseteq \{j\}$, $j \not\vdash \theta$. We must show $j \not\vdash \varphi \lor \theta$. So suppose $k \supseteq j$ and $k \not\vdash \varphi$. Then $k \supseteq i$. By eternity lemma $\Delta \subseteq \{k\}$. Thus $\{i\} \subseteq \{k\}$.

By IH applied to Σ, $k \not\vdash \theta$. Thus $j \not\vdash \varphi \lor \theta$.

Finally, let $\Delta = \Gamma \vdash \varphi$. Obviously Δ is included in $\overline{\Delta}$. We show $\overline{\Delta}$ is an R-intuitionistic set not containing φ.

First, suppose for reductio that we have $\Delta \not\vdash \varphi$. Then φ is R-deducible from finitely many members of $\overline{\Delta}$.

So for some k, $\Delta \vdash \varphi$. Since $\Delta \vdash \varphi$, let Δ_{φ} be the first member of the sequence $\Delta_{\varphi}, \Delta_{\varphi}, \ldots$ from which φ is R-deducible. Now suppose $\Delta_{\varphi} \ni \varphi$. Then $\Delta_{\varphi} \vdash \varphi$.

Also by \lor-I $\Delta_{\varphi} \vdash \varphi$. Hence $\Delta_{\varphi} \vdash \varphi$, contrary to choice of m. Thus $\overline{\Delta}_{\varphi} \not\vdash \varphi$, whence $\varphi \not\in \overline{\Delta}$ and $\overline{\Delta} \not\vdash \varphi$. So we have shown that $\overline{\Delta}$ is R-consistent and does not contain φ.

We now show that $\overline{\Delta}$ is R-closed. Suppose $\overline{\Delta} \vdash \varphi$. Let φ appear as φ_1. Thus $\varphi_1 \in \overline{\Delta}$. So by construction $\varphi_1 \in \Delta_{\varphi}$. Hence $\varphi \in \overline{\Delta}$.

Finally we show that $\overline{\Delta}$ is disjunctive. Suppose $\Box \varphi \lor \theta \in \overline{\Delta}$.

Then either $\overline{\Delta} \not\vdash \varphi$ or $\theta \not\in \overline{\Delta}$.

Intuitionistic Satisfiability Theorem. For every index Δ in Σ, $\Delta = \{\Delta\}$.

Proof. We show $\Delta \not\vdash \varphi$ iff $\varphi \in \overline{\Delta}$ by induction on φ.

Basis. For $\varphi = \bot$ the result holds trivially. For $\varphi = A$ the result holds since Δ is closed and so $\Delta \subseteq \Delta$.

Inductive step. For the case where φ is $(\varphi \lor \theta)$ or $(\varphi \land \theta)$ the result is
immediate by IH and the definitions of forcing and of R-intuitionistic set. Suppose finally that \(\varphi \) is \((\psi \Rightarrow \theta) \). Suppose \((\psi \Rightarrow \theta) \not\in \Delta \). Let \(\Gamma \not\in \Delta \). So \(\Delta \not\subseteq \Gamma \) and \(\Delta \not\subseteq \Gamma \). Suppose \(\Gamma \not\subseteq \phi \). By IH \(\phi \not\in \Gamma \). But \((\psi \Rightarrow \theta) \not\in \Gamma \) so \(\theta \not\in \Gamma \). By IH \(\Gamma \not\subseteq \theta \). So by definition of forcing, \(\Delta \not\subseteq (\phi \Rightarrow \theta) \). Now suppose for the converse that \((\psi \Rightarrow \theta) \not\in \Delta \). We show \(\Delta \not\subseteq \phi \). Since \(\Delta \) is R-closed, \(\Delta \not\subseteq \phi \). So \((\Delta, \phi) \not\in \theta \). By the maximization theorem let \(\Gamma \) be an R-intuitionistic set including \((\Delta, \phi) \) but not containing \(\theta \). By IH \(\Gamma \not\subseteq \phi \) but \(\Gamma \not\subseteq \theta \). Moreover \(\Gamma \not\subseteq \Delta \). Thus by definition of forcing, \(\Delta \not\subseteq \phi \). This completes our proof.

Now suppose \(\Delta \not\subseteq \phi \). By the maximization theorem let \(\Gamma \) be an R-intuitionistic set including \(\Delta \) but not containing \(\psi \). In the natural model for \(R \) we have \(\Gamma = [\Gamma] \) by the satisfiability theorem. So in this model \(\Gamma \) forces every member of \(\Delta \) but does not force \(\varphi \). Thus we have shown

if \(\Delta \not\subseteq \varphi \) then for some index \(\Gamma \) in \(\mathcal{L} \Delta \not\subseteq [\Gamma] \) but \(\varphi \not\in [\Gamma] \).

This immediately yields the following theorem:

Intuitionistic Completeness Theorem

Suppose that for any Kripke model \(K \) and for any index \(i \) in \(K \) admitting \(R, \Delta \not\subseteq \psi \). Then \(\Delta \not\subseteq \varphi \).

Note that we cannot strengthen the Completeness Theorem to

\((\alpha) \) For every \(K \) and for every index \(i \) in \(K \) if \(\Delta \not\subseteq \psi \) and \(R \) is the set of rules which hold at \(i \), then \(\Delta \not\subseteq \varphi \).

Firstly, assuming \(R \) contains only finitary rules, \((\alpha) \) fails for infinite \(\Delta \) because \(\not\subseteq \) need not be compact. For, suppose \(I \) is the set \(\{0, 1, 2, \ldots, \omega\} \) with the usual left-right ordering. Suppose for each \(n, a = \{A_1, \ldots, A_n\} \) and \(\omega = \{A_\omega, A_1, \ldots\} \). Then \(\{A_i, i > 0\} \not\subseteq A_\omega \); but for all \(n \) \(\{A_1, \ldots, A_n\} \not\subseteq A_\omega \).

Secondly, \((\alpha) \) fails even for finite \(\Delta \). Consider the model

\[
\emptyset = 0 \prec 1 = \{A_0, A_1\} \\
2 = \{A_0, A_2\}
\]

with \(\prec \) from left to right. In this model \(A_0 \not\subseteq A_1 \vee A_2 \). By considering the normal form of an R-proof of \(A_1 \vee A_2 \) from \(A_0 \), we see that one of the rules \(A_1 \vee A_2 \) or \(A_0 \vee A_2 \) would have to be used. But neither of these holds at 0.

The failure of \((\alpha) \) does raise a question mark over the feasibility of regarding any Kripke model as a satisfactory representation of what might be regarded as 'all possible intuitionistic states of affairs through time'. Perhaps it is only the natural model \(\not\subseteq \) that can be so regarded. We do have the result

If for all \(i \) in \(\mathcal{L} \Delta \not\subseteq \psi \) then \(\Delta \not\subseteq \varphi \).

As a special case, taking \(R \) empty, we have

If for all \(i \) in \(\mathcal{L} \not\subseteq \psi \) then \(\not\subseteq \varphi \).

We shall end by showing that the law of excluded middle is not intuitionistically valid. A counterexample Kripke model for \(A \vee \lnot A \) is

\[
\emptyset = 0 \prec 1 = \{A\} \\
2 = 0
\]

with \(\prec \) from left to right. Here \(\not\subseteq A \vee \lnot A \).
CHAPTER 6

First order metalogic

6.1 Normalization and interpolation theorems p.116
6.2 Joint consistency and definability theorems p.120
6.3 Decidability of monadic logic p.122
6.4 Some major metatheorems via Henkin's method p.125
6.5 Corollaries to compactness p.131
6.6 Kripke semantics for first order intuitionistic logic p.132
6.1 Normalization and interpolation theorems. The normalization theorem extends to first order logic. We recall 5.4. Again we adopt dilemma as the only classical rule of negation. The difference now from the propositional case is that a proof can be transformed to one in which applications of dilemma discharge only atomic or quantified sentences. The proof of normalization then goes through as in the propositional case. As before applications of dilemma can be driven downwards as far as they will go so that in the resulting proof no sentence occurrence standing as the conclusion of an application of dilemma stands as premise for the application of any rule other than dilemma, $\forall I$ or $\exists E$. In summary we have the

Normalization theorem

Every proof can be converted into a proof in fully normal form.

We shall now turn our attention to the system of classical first order logic with identity but not functions, based on just the Sheffer strokes for connection and quantification. The rules of inference are as stated in Section 4.7; remember that the classical negation rule is reductio in the form

$$ \phi \vdash \psi $$

$$ \vdots $$

$$ * \vdash \psi $$

The rules for identity are the axiom $\bar{a} = \bar{a}$ (reflexivity) and the rule of substitutivity

$$ \frac{\phi \vdash a = b}{\psi} $$

where ϕ, ψ are atomic and $\phi^* = \phi^*$.

We have reduction procedures by means of which we can remove from any Sheffer proof any sentence occurrence which stands simultaneously as the major premise of an elimination, and as the conclusion either of a corresponding introduction or of the absurdity rule. By means of a further transformation:

$$ \frac{(\phi \vdash \phi)(\psi \vdash \phi)}{\Delta} $$

$$ \frac{\Gamma_1 \Pi \Gamma_2}{\Sigma_1 \Sigma_2} $$

$$ \frac{\phi^* \psi \phi \phi^*}{*} $$

$$ \frac{(\phi \vdash \phi)(\psi \vdash \phi)}{\Delta} $$

(where or without the x's and a's) we can ensure that a proof in normal form can be converted into one in which no sentence occurrence stands simultaneously as the conclusion of reductio and as the major premise of an elimination. A Sheffer proof of this kind is said to be in fully normal form. (Throughout this section 'proof' will mean 'Sheffer proof' in the appropriate contexts.)

A proof in fully normal form whose last step is an elimination must have the form

$$ \frac{\Gamma_1 \Sigma_1 \Gamma_2 \Sigma_2}{*} $$

(with or without the x's and a's)

where the major premise of the final elimination stands as an undischarged assumption. This is because it cannot stand as the conclusion of a corresponding introduction or of the absurdity rule (otherwise it would be maximal); nor, in virtue of the transformation above, as the conclusion of reductio; nor, since it is not atomic, as the conclusion of substitutivity.

Thus any proof in fully normal form containing more than one sentence occurrence satisfies just one of the following descriptions:

(i) Its last step is an application of the absurdity rule.
(ii) Its last step is an application of reductio.
(iii) Its last step is an application of substitutivity.
(iv) Its last step is an introduction.
(v) Its last step is an elimination whose major premise stands as an undischarged assumption.

This classification will be useful in establishing the Interpolation Theorem below, for whose statement and proof we require a few more preliminary definitions.

Suppose $\Delta_1 \vdash \chi$ and $\Delta_2 \vdash \phi$. Then χ is called an interpolant from Δ_1 to ϕ via Δ_2. If proofs Π_1 and Π_2 justify the respective deducibility statements then the graphic representation of the interpolation of χ is

$$ \frac{\Delta_1}{\Pi_1} $$

$$ \frac{\Delta_2 \chi}{\Pi_2} \phi $$

The reader is advised to use this graphic aid when verifying subsequent interpolation claims for himself.

Suppose moreover that every name and predicate (other than
identity) which occurs in x occurs in at least one member of Δ, and in at least one member of $\Lambda \cup \{\psi\}$. Then we say that x is a well-behaved interpolant from Δ_1 to ψ via Δ_2.

In subsequent discussion $[\psi]$ will be the formula in Sheffer notation obtained from ψ in the obvious way by eliminating the usual operators in ψ in favour of the strokes, in accordance with the definitions given in section 4.7. $\forall x \psi_1(x) (\exists x \psi_2)$ will be the universal (existential) closure of ψ with respect to the names in the sequence α, the variables in the sequence β being chosen in some sensible way.

Interpolation Theorem

Suppose Δ_1 and Δ_2 are disjoint with union Δ, and Π is a proof of ψ depending on Δ. Then there is a well-behaved interpolant from Δ_1 to ψ via Δ_2.

Proof. By induction on the complexity of Π. It suffices to consider only proofs Π in fully normal form (since every proof can be turned into one in fully normal form).

Basis

Case (i): $\Pi = \psi \in \Delta_1$. Then ψ is a well-behaved interpolant from Δ_1 to ψ via Δ_2 (which is empty).

Case (ii): $\Pi = \psi \in \Delta_2$. Then $[\forall x \psi = x]$ is a well-behaved interpolant from Δ_1 (which is empty) to ψ via Δ_2.

Case (iii): $\Pi = (a = a)$. Then $(a = a)$ is a well-behaved interpolant from Δ_1 (which is empty) to $(a = a)$ via Δ_2 (which is empty).

Inductive step. By cases (i)-(v) of the classification above of proofs in fully normal form.

Case (i): Π is Δ

$\vdash\psi$

By IH applied to Σ there is some well-behaved interpolant χ from Δ_1 to ψ via Δ_2. But then χ is a well-behaved interpolant from Δ_1 to ψ via Δ_2.

Case (ii): Π is $\Delta, \psi[\psi] \in \Delta_1$

$\vdash \Sigma, \psi[\psi]$

By IH applied to Σ there is some well-behaved interpolant χ from Δ_1 to $\psi[\psi]$ via Δ_2. But then χ is a well-behaved interpolant from Δ_1 to $\psi[\psi]$ via Δ_2.

Case (iii): Π is $\Pi_1 \vdash \Pi_2$

$\psi \in \Gamma_1 \cup \Gamma_2$ where $\Delta = \Gamma_1 \cup \Gamma_2$

$\psi \in \Sigma_1 \cup \Sigma_2$

$\psi \in \phi \theta$

By IH applied to Σ_1 there is some well-behaved interpolant χ_1 from $\Delta_1 \cap \Gamma_1$ to $\phi \psi$ via $\Delta_2 \cap \Gamma_2$.

By IH applied to Σ_2 there is some well-behaved interpolant χ_2 from $\Delta_2 \cap \Gamma_2$ to $\theta \psi$ via $\Delta_1 \cap \Gamma_1$.

But then $[\chi_1, \chi_2]$ is a well-behaved interpolant from Δ_1 to ψ via Δ_2.

Case (iv): Π is $\Pi_1 \vdash \Pi_2$

$\psi \in \Delta, \phi \psi \in \Delta_1$

$\psi \in \Sigma_1 \cup \Sigma_2$

$\psi \in \phi \theta$

By IH applied to Σ there is some well-behaved interpolant χ from Δ_1 to ψ via Δ_2. But then χ is a well-behaved interpolant from Δ_1 to ψ via Δ_2. (For the propositional case, simply delete x and a in the foregoing.)

Case (v): Π is $\Pi_1 \vdash \Pi_2$

$\psi \in \Gamma_1 \cup \Gamma_2$ where $\Delta = \Gamma_1 \cup \Gamma_2 \cup [\phi \psi, \theta \psi]$ and ψ is \ast

$\phi \psi \in \Delta_1 \cup \Delta_2$

$\psi \in \phi \theta$

By IH applied to Σ_1 there is some well-behaved interpolant χ_1 from $\Gamma_1 \cap \Delta_1$ to $\phi \psi$ via $\Gamma_1 \cap \Delta_2$.

By IH applied to Σ_2 there is some well-behaved interpolant χ_2 from $\Gamma_2 \cap \Delta_2$ to $\theta \psi$ via $\Gamma_2 \cap \Delta_1$.

Let α contain just the names in χ_1 or χ_2 not occurring in any member of Δ. Then $[\forall \alpha \chi_1, \chi_2] \psi$ is a well-behaved interpolant from Δ_1 to ψ via Δ_2. (Universal closure being necessary to ensure good behaviour with respect to names.)

Subcase (a): $\psi \in \Delta_1$

By IH applied to Σ_1 there is some well-behaved interpolant χ_1 from $\Gamma_1 \cap \Delta_1$ to $\phi \psi$ via $\Gamma_1 \cap \Delta_2$.

By IH applied to Σ_2 there is some well-behaved interpolant χ_2 from $\Gamma_2 \cap \Delta_2$ to $\theta \psi$ via $\Gamma_2 \cap \Delta_1$.

Let α contain just the names in χ_1 or χ_2 not occurring in any member of Δ. Then $[\forall \alpha \chi_1, \chi_2] \psi$ is a well-behaved interpolant from Δ_1 to ψ via Δ_2. (Universal closure being necessary to ensure good behaviour with respect to names.)

Subcase (b): $\phi \gamma \theta \in \Delta_2$

By IH applied to Σ_1 there is some well-behaved interpolant χ_1 from $\Gamma_1 \cap \Delta_1$ to $\phi \psi$ via $\Gamma_1 \cap \Delta_2$.

By IH applied to Σ_2 there is some well-behaved interpolant χ_2 from $\Gamma_2 \cap \Delta_2$ to $\theta \psi$ via $\Gamma_2 \cap \Delta_1$.

Let α contain just the names in χ_1 or χ_2 not occurring in any member of Δ. Then $[\forall \alpha \chi_1, \chi_2] \psi$ is a well-behaved interpolant from Δ_1 to ψ via Δ_2. (Existential closure being necessary to ensure good behaviour with respect to names.)

For the propositional case, simply delete x and a and mention of closure in the foregoing.
We have made this excursion into the Sheffer system in proving
the Interpolation Theorem because the internal symmetry between
the connective and quantifier rules and the neat characterization of
proofs in fully normal form considerably reduces the overall case
load in the inductive step. Since the strokes form an expressively
complete basis for classical logic, we may consider the Interpolation
Theorem proved for the usual system of classical logic involving the
operators \neg, \land, \lor, \to, \exists and \forall. To prove the theorem for intuitionistic
logic (in which these operators are definitionally independent of one
another) we have to resort to a much lengthier characterization of
proofs in normal form (particularly in case (\lor)) and bear a much
heavier case load in the inductive step.

Let us now return to the usual logical operators.

6.2 Joint consistency and definability theorems. We identify a
language with the set of its predicates and distinguished names. Let Δ
be a set of sentences of a language L. Then Δ is a theory in L if and
only if Δ is closed under deducibility 'within L' in the following
sense: every sentence of L which is deducible from Δ is in Δ. Δ is
consistent if and only if Δ is not deducible from Δ.

Suppose L' includes Δ, Δ' includes Δ. Δ' is a theory in L, Δ' is a
theory in L', and every sentence in Δ' which is a sentence of L is in Δ.
Then we say that Δ' conservatively extends Δ.

The following theorem, for whose proof we use the interpolation
theorem, holds regardless of whether classical or intuitionistic de-
nability is in question.

Joint Consistency Theorem

Suppose (i) $\Delta_0, \Delta_1, \Delta_2$ are consistent theories in L_0, L_1, L_2
respectively

(i1) $L_1 \cap L_2 \subseteq L_0$

(i11) Δ_1 and Δ_2 conservatively extend Δ_0.

Then $\Delta_1 \cup \Delta_2$ is consistent.
Proof: Suppose for reductio that $\Delta_1 \cup \Delta_2 \vdash \ast$. Then for some finite
$\Gamma_1 \subseteq \Delta_1$, $\Gamma_2 \subseteq \Delta_2$ we have $\Gamma_1 \cup \Gamma_2 \vdash \ast$.

By the interpolation theorem there is some well-behaved inter-
polant χ from Γ_1 to \ast via $\Gamma_1 \setminus \Gamma_1$. By good behaviour and (i1), χ is a
sentence of L_0. By interpolation $\Gamma_1 \vdash \chi$ whence by (i11) $\chi \in \Delta_0$; and
$\Gamma_2, \chi \vdash \ast$ whence by (i11) ($\neg \chi) \in \Delta_0$. But then Δ_0 is inconsistent, con-
tradicting (i).

Thus $\Delta_1 \cup \Delta_2$ is consistent.

If Δ is a set of sentences and P and Q are n-place predicates then
Δ^P_n will be the set resulting from Δ by replacing every occurrence of P
in every member of Δ by an occurrence of Q. Likewise if Π is a proof

then Π^P_n will be the result of replacing every occurrence of P in every
sentence occurrence in Π by an occurrence of Q. We shall abbreviate
$P(t_1, \ldots, t_n)$ to $P(t)$. Suppose some member of Δ contains the n-place predicate P. Consider the following condition for implicit definition:

$\Delta, \Delta^P_n \vdash \forall x (P(x) \equiv Q(x))$, for any n-place predicate Q not occurring in Δ.

This may be understood as follows. If the extensions of names and
predicates other than P occurring in Δ have been fixed, then there is
at most one way of fixing the extension of P so as to satisfy Δ. We
say that P is implicitly defined, relative to Δ, in terms of the other
predicates and names occurring in Δ. Now consider the following
condition for explicit definability:

$\Delta \vdash \forall x (P(x) \equiv \phi(x))$, for some formula $\phi(x)$ not involving P
and involving only names and predicates (other than identity)
occurring in Δ.

We say that P is explicitly definable, relative to Δ, in terms of the
names and predicates (other than identity) occurring in Δ.

There is an intuitionistic logical consequence relation, to be
defined below in 6.7, in terms of which the condition for implicit
definition can be formulated for the intuitionistic system. For either
the classical or intuitionistic readings of consequence and deduc-
ibility we have the following theorem, our second corollary to the
interpolation theorem.

Definability Theorem

Suppose some member of Δ contains the predicate P, which is
implicitly defined relative to Δ. Then P is explicitly definable relative to
Δ.

Proof: Suppose P is n-place. Let Q be an n-place predicate not occurring
in Δ. By implicit definability we have

$\Delta, \Delta^P_n \vdash \forall x (P(x) \equiv Q(x))$

By completeness of first order logic (classical or intuitionistic) to be
proved in 6.5 and 6.7, we have

$\Delta, \Delta^P_n \vdash \forall x (P(x) \equiv Q(x))$

Let a_1, \ldots, a_n be names not occurring in Δ. Then $\Delta, \Delta^P_n, P(a) \vdash Q(a)$. So
for some finite $\Gamma \subseteq \Delta, \Theta \subseteq \Delta^P_n$ we have $\Gamma, \Theta, P(a) \vdash Q(a)$. Now by the
interpolation theorem there is some well-behaved interpolant χ from
$\Gamma \setminus \Theta, P(a)$ to $Q(a)$ via Θ, in virtue of proofs Π and Σ featuring thus:
monadic argument involving only finitely many premises, whether it is valid or invalid.

To prove the desired result let us consider first a monadic language without identity.

Finite Satisfiability Theorem for Monadic Languages without Identity

If a sentence \(\varphi \) of a monadic language without identity is satisfiable, then \(\varphi \) is satisfiable in a finite model.

Proof. Let \(P_1, \ldots, P_n \) be the monadic predicates occurring in \(\varphi \). Let \(M \) be any model for these predicates in which \(\varphi \) is true. Define an equivalence relation \(\approx \) on the domain of \(M \) as follows:

\[
\alpha \approx \beta \text{ iff } \alpha \text{ and } \beta \text{ satisfy the same predicates among } P_1, \ldots, P_n \text{ in } M.
\]

Let \([\alpha] \) be the equivalence class of \(\alpha \). There are at most \(2^n \) such equivalence classes. Let \([M] \) be the model based on \([\alpha] \) satisfying \(P \) in \([M] \) just in case \(\alpha \) satisfies \(P \) in \(M \), and with any name \(a \) denoting \([\alpha] \) in \([M] \) just in case \(a \) denotes \(\alpha \) in \(M \). We now show by induction on \(\varphi \) that \([M] \models \varphi \) if and only if \(\varphi \) holds in \(M \), where \(\models \) assigns to any variable the value \([s(x)] \). The basis step has been accomplished by definition of \([M] \). In the inductive step only quantified formulae need particular consideration, since the reasoning for connected formulae is trivial. So suppose \([M] \models 3x\varphi([s]) \). Then for some \([\alpha] \in [M] \), \([M] \models \varphi([s(x)/\alpha]) \). Thus for some \([\alpha] \in [M] \), \([M] \models \varphi([s(x)/\alpha]) \). By IH, for some \(\alpha \in M \), \(M \models \varphi([s(x)/\alpha]) \). Hence \(M \models 3x\varphi([s]) \). The converse is easy.

When identity is present, this construction of a finite model \([M] \) from \(M \) will not work. For, let \(\varphi \) be the sentence \(3x3y(x = y \land P(x \land y)) \), and let \(M \) be the model consisting of two individuals \(\alpha \) and \(\beta \) with both satisfying \(P \). Then \([M] \) as defined above consists of only one individual, the equivalence class \([\alpha, \beta] \), satisfying \(P \). \(\varphi \) is false in \([M] \).

Let \(q(\varphi) \) be the least upper bound on the number of free variables in any subformula of \(\varphi \). Could we define the required model \([M] \) so as to make it contain \(q(\varphi) \) copies of \([M] \)? No. For, if \(\varphi \) is the sentence \(3x3y(\varphi = x \land P(x \land y)) \) then \(q(\varphi) = 2 \); but any model satisfying \(\varphi \) contains exactly one individual, satisfying \(P \).

How, then, should the required model \([M] \) be defined when identity is present? A model \(M \) for the predicates \(P_1, \ldots, P_n \) occurring in \(\varphi \) which satisfies \(\varphi \) could have any number of members. If, however, we think of the kind of a member as determined by which of these predicates it satisfies in \(M \), it is evident that there are fewer than \(2^k \) kinds of member in \(M \). \(M \) may therefore be represented by the following grid:
\[\alpha_1, \ldots, \alpha_1^n \]
\[\vdots \]
\[\alpha_2, \ldots, \alpha_2^n \]

Each row corresponds to a kind. The \(i \)th row has \(n_i \) members of the relevant kind. The number of rows, \(m \), does not exceed \(2^m \), the maximum number of kinds exemplifiable in \(M \). The equivalence class consisting of all the members of the \(i \)th row we shall call \(\alpha_i \).

Now let \(n_i = \min(n_i, q(\varphi)) \). The more complicated model \([M]\) that we require is obtained by allowing carefully controlled numbers of non-identicals of the same kind:

\[\alpha_1, \ldots, \alpha_1^n \]
\[\vdots \]
\[\alpha_2, \ldots, \alpha_2^n \]

with each row corresponding to the same kind as in the representation of \(M \), and names co-refering in \([M]\) iff they co-refer in \(M \).

Let \(s \) be an assignment to variables of members of \(M \), and let \(|s| \) be an assignment to the same variables of members of \([M]\). We define

\[s \equiv |s| \iff \text{for all variables } x, y \]

(i) \(s(x) \) is of the same kind as \(|s|(x) \)

(ii) \(s(x) = s(y) \iff |s|(x) = |s|(y) \)

(iii) for every name \(a, a \) denotes \(s(x) \) in \(M \) iff

\[a \text{ denotes } |s|(x) \text{ in } [M] \]

Now let \(\varphi \) be any subformula of \(\varphi \) and let \(s, |s| \) be assignments to just the free variables of \(\varphi \) of values in \(M, [M] \) respectively, such that \(s \equiv |s| \). We show by induction on \(\varphi \) that \(M \models \varphi[s] \iff [M] \models \varphi[|s|] \).

Basis. The result obviously holds for atomic formulae \(P(a), P(x), a = a, x = x, a = x, x = a, x = y \) by definition of \([M]\) and of \(\equiv \).

Inductive step. The reasoning is trivial when \(\varphi \) has a connective dominant. So suppose \(\varphi \) is \(3x \theta \). Suppose \(M \models 3x \theta[s] \). Then for some \(\alpha \) in \(M, [M] \models \theta[s(x/\alpha)] \). Now choose \(\beta \) in \([M]\) as follows:

1. if \(\alpha \) is some \(s(y) \), choose \(|s|(\alpha) \);
2. otherwise, suppose \(\alpha \) appears in \(\alpha \) in our grid representation of \(M \). By definition of \(n_i \) and \(\equiv \), we can choose some \(\alpha \) in \([M]\) not in the range of values of \(|s| \), which is named by \(a \) in \([M]\) iff \(\alpha \) is named by \(a \) in \(M \).

Clearly \(s(x/\beta) \equiv |s|(x/\beta) \). Thus by IH \([M] \models \theta[|s|(x/\beta)] \). Hence \([M] \models 3x \theta[|s|] \). The converse is similar.

As an obvious corollary, \(M \models \varphi \iff [M] \models \varphi \). Moreover, \(\exists \alpha q(\varphi) \) is an upper bound on the size of \([M]\). We have thus established the Finite

6.4 Some major metatheorems via Henkin's method.

So far in this chapter we have been considering classical first order logic. We have proved soundness in 4.11, normalization, interpolation, consistency and definability theorems, as well as the decidability of monadic logic. We turn now to the problem of proving completeness.

We shall give an argument that is a suitable generalization of Henkin's method illustrated in the propositional case in the previous chapter. The argument establishes maximization of consistent sets of sentences and satisfiability of maximal consistent sets, with some complications owing to the presence of quantifiers. The argument will be given without break in continuity, for the following reason. Certain material will be enclosed in braces, and the argument will be valid whether we read that material or delete it, provided that we do so uniformly in each case. These two options, combined with either intuitionistic or classical readings of \(r \), yield Theorems 1, 11 and 111, which are stated after the argument.

The Argument.

Suppose \(\Delta \neq \emptyset \). Let \(\varphi_0, \varphi_1, \ldots \) be a list of all sentences formed from expressions occurring in members of \(\Delta \) and from the list \(\alpha_0, \alpha_1, \ldots \) of all names occurring in members of \(\Delta \) along with infinitely many names not so occurring. Let \(\varphi_0, \varphi_1, \ldots \) be a list of all formulae with one free variable, constructed in the same way. \(\exists x \varphi \) and \(\forall x \varphi \) will be the results of binding the free variable in \(\varphi \) by \(\exists \) and \(\forall \) respectively.

\(\varphi r \) will be the result of substituting the term \(r \) for all free occurrences of that variable in \(\varphi \). In what follows \(\theta \) shall be the first name in our list above not to occur in the set of sentences next mentioned.

We define a sequence \(\Delta = \Delta_0 \subseteq \cdots \subseteq \Delta_n \subseteq E_n \subseteq A_n \subseteq \Delta_{n+1} \subseteq \cdots \) of sets of sentences as follows:

\[
E_n = \Delta_n, \exists \alpha \varphi \quad \text{if } \Delta_n, \exists \alpha \varphi \varphi \neq 0 \quad (1)
\]

\[
A_n = E_n \forall x(\sim \varphi) \quad \text{if } E_n, \forall x(\sim \varphi) \varphi \neq 0 \quad (2)
\]

\[
\Delta_{n+1} = A_n, \varphi \quad \text{if } A_n, \varphi \varphi \neq 0 \quad (3)
\]

Let \(\Delta = \bigcup \Delta_n \).
The informal picture of the construction is as follows:

Lists a_0, a_1, \ldots names

ψ_0, ψ_1, \ldots sentences

$\varphi, \varphi_1, \ldots$ formulae with one free variable

\[
\begin{array}{c}
\Lambda = \Lambda_0 \\
? \psi_0 \\
\varphi_0 \\
E_0 \\
? \psi_0 \\
\varphi_0 \\
E_0 \\
\Lambda_1, \ldots, \Lambda_n \\
? \psi, \varphi \\
\varphi_1 \\
E_1 \\
? \psi, \varphi \\
\varphi_1 \\
E_1 \\
\Lambda_{n+1}, \ldots \\
\vdots \\
\varphi, \varphi_1, \ldots, \varphi_n \\
\Lambda \\
\end{array}
\]

In forming E_a from Δ_a we look to the existential quantification of the nth formula φ_a. If it is consistent with Δ_n, then we add a ‘new instance’ φ_a as a ‘witness’ to the existential claim. Otherwise we add nothing. In forming A_φ from E_φ, we look to the universal quantification of (the double negation of) the nth formula φ_a. If it is consistent with E_φ, we add it; otherwise we add a ‘new counterinstance’ $\neg \psi, \varphi$ as a ‘witness’ to the failure of the universal claim. In forming Δ_{a+1}, from A_φ we look to the nth sentence φ_n. If it is consistent with A_φ we add it; otherwise we add nothing.

An important feature of this construction is that it preserves consistency: if Δ_n is consistent, then so is Δ_{n+1}. To prove this, we shall prove the contrapositive. We shall assume that Δ_{n+1} is inconsistent, and show that the inconsistency would be transmitted back to A_φ and E_φ to Δ_n.

So suppose $\Delta_{n+1} \vdash \ast$.

If $A_\varphi \vdash \varphi$, then by (5) $A_{n+1} = A_n \varphi$, and so $A_\varphi \vdash \ast$. Thus $A_{n+1} \varphi \vdash \ast$.

By (6) $\Delta_{n+1} = \Delta_n$.

So $A_\varphi \vdash \ast$.

If $E_\varphi \varphi \vdash \ast$ then by (3) $A_\varphi = E_\varphi \forall x (\neg \varphi) \varphi$ and so $E_\varphi \varphi \vdash \ast$. Thus $E_\varphi \varphi \vdash \ast$.

By (4) $E_\varphi \varphi \vdash \ast$. Hence $E_\varphi \varphi \vdash \ast$.

(1) $E_\varphi \varphi \vdash \ast$.

If $\Lambda_n \exists \varphi_a \ast$ then by (1) $E_\varphi \varphi \vdash \ast$ and so $\Lambda_n \exists \varphi_a \varphi \vdash \ast$, with φ occurring parametrically for \exists-Elimination. So $\Lambda_n \exists \varphi_a \varphi \vdash \ast$. Thus

$\Lambda_n \exists \varphi_a \ast$. By (2) $E_\varphi = \Lambda_n$.

Hence $\Delta_n \vdash \ast$.

Now we show that Δ is consistent. Suppose for reductio that $\Delta \vdash \ast$. Then \ast is deducible from finitely many premises in Δ. All these premises, by construction, will be in some Δ_n. So $\Delta_n \vdash \ast$. But then by the foregoing reasoning the inconsistency would be transmitted back to Δ_n, contrary to our main assumption. Thus $\Delta \not\vdash \ast$.

Next we show that Δ is maximal. Suppose for reductio that neither φ nor $\neg \varphi$ is in Δ. Let φ occur in our list as φ_1 and let $\neg \varphi$ occur as φ_2. Since φ_1 is not in Δ it is not in Δ_{n+1}, which therefore cannot be $A_\varphi \varphi_1$, whence the latter is inconsistent. Similarly $A_\varphi \varphi_1$ is inconsistent. Let $m = \max(i, j)$. We have $A_{\varphi_1} \subseteq A_m$ and $A_{\varphi_1} \subseteq A_{\varphi_2}$. Hence $A_{\varphi_1} \varphi_1 \vdash \ast$ and $A_{\varphi_1} \neg \varphi_1 \vdash \ast$. By the proof schema

\[
\begin{array}{c}
A_{\varphi_1} \varphi_1 \\
\vdots \\
\ast \\
\vdots \\
\ast \\
\end{array}
\]

we have $A_{\varphi_1} \varphi_1 \vdash \ast$, contrary to our consistency result above. Thus for all φ, either φ is in Δ or $\neg \varphi$ is in Δ.

Obviously also Δ is closed, that is, for all φ if $\Delta \vdash \varphi$ then $\varphi \in \Delta$. Now we define a ‘natural model’ M and exploit the consistency, maximality and closure of Δ, as well as its provision of ‘witnesses’ as explained above, to show that Δ is precisely the set of sentences true in M.

The ‘natural model’ M is defined as follows:

(i) Its domain is the set of all equivalence classes of terms under the equivalence relation $(t = u) \in \Delta$.

(ii) Each name denotes its own equivalence class.

(iii) $M(f)$, the function assigned within M to the n-place function f, maps $|t_1|, \ldots, |t_n|$ to $|f(t_1, \ldots, t_n)|$.

(iv) $M(P)$, the extension assigned within M to the n-place primitive predicate P, contains $(|t_1|, \ldots, |t_n|)$ if $P(t_1, \ldots, t_n) \in \Delta$.

That $(t = u) \in \Delta$ defines an equivalence relation between terms is evident from the deductive closure of Δ under the rules.
consistent. So for all $t \sim \phi \in \Delta$. In particular this holds for all names. Thus by construction $\forall \chi(\sim \phi \in \Delta).

This concludes our argument.

From this argument, by deleting everything in braces and reading \vdash as classical deducibility, we have

Theorem 1

If $\Delta \vdash \phi$, then Δ has a model.

By reading everything in braces, and reading \vdash as intuitionistic deducibility, we have

Theorem 11

If $\Delta \vDash \phi$, then there is a model of all the members of Δ which have \sim immediately after every universal quantifier prefix.

By deleting everything in braces and reading \vdash as intuitionistic deducibility in the system lacking \forall; and setting $A_e = E_x$, thereby omitting clauses (3) and (4) in the construction, we have

Theorem 111

If Δ has no sentence involving \forall, and $\Delta \vDash \phi$, then Δ has a model.

We now come to our list of important corollaries.

Strong Completeness Theorem for Classical First Order Logic with Identity

If $\Delta \vdash \phi$ then $\Delta \vDash \phi$.

Proof. Suppose $\Delta \vdash \phi$. Then $\Delta, \sim \phi$ has no model. By Theorem 1 $\Delta, \sim \phi \vDash \phi$. Thus by classical reducible $\Delta \vdash \phi$.

Compactness Theorem

If $\Delta \vdash \phi$ then for some finite $\Gamma \subseteq \Delta, \Gamma \vdash \phi$.

Proof. Suppose $\Delta \vdash \phi$. By completeness there is a proof of ϕ from finitely many premises in Δ. By soundness these premises logically imply ϕ.

Countable Models Theorem

If Δ has a model then Δ has a countable model.

Proof. Suppose Δ has a model. By soundness $\Delta \vDash \phi$. By the proof of Theorem 1 Δ has a countable model whose individuals are sets (equivalence classes) of terms. Since there are only countably many terms, the model is countable.

Let $\forall \sim \phi$ be the result of inserting \sim immediately after every universal quantifier prefix in ϕ. Let $\sim \phi$ be $\sim (\forall \sim \phi)$. Let $\vdash_{\forall \sim \phi}$ be the classical deducibility relation when $\forall \sim$ is not permitted. We have the following two generalizations of the Double Negation Theorem of propositional logic.

Double Negation Theorem 1

If $\Delta \vdash \phi$ then $\Delta \vDash \sim \phi$.

Proof. Suppose $\Delta \vdash \phi$. Then $\Delta, \sim \phi \vDash \phi$. By soundness $\Delta, \sim \phi$ has no model. Thus $\forall \sim (\sim \Delta), \forall \sim \sim \phi$ has no model. By Theorem 11...
Double Negation Theorem I
If \(\Delta \vdash \varphi \), then \(\Delta \vdash \neg \neg \varphi \).

Proof: Suppose first that \(\Delta \) and \(\varphi \) do not involve \(\forall \). If \(\varphi \) is classically deductible from \(\Delta \) then \(\neg \neg \varphi \) has no model. Hence by Theorem I111
\(\neg \neg \Delta \equiv \neg \neg \neg \varphi \), and so \(\neg \neg \Delta \equiv \neg \neg \varphi \). We now proceed by induction on the number of applications of \(\forall \) in proofs. Indeed, since
\(\neg \neg \forall \varphi \equiv \neg \neg \varphi \), the result is immediate.

Since the converse of the Double Negation Theorem I is obviously true, intuitionistic contradiction is undecidable if classical consequence is. (We explain decidability and undecidability in Chapter 7.)

The cardinality of a language \(L \) is the cardinality of the set of expressions of \(L \) — names, function signs and primitive predicates. If the cardinality of \(L \) is infinite then it is the same as the cardinality of the set of all formulae of \(L \). The construction in Henkin's argument given above can be generalized to languages of any infinite cardinality \(\kappa \) by ensuring that the list of names contains \(\kappa \) 'new' names not occurring in members of \(\Delta \). The cardinality of \(\Delta \) will not exceed \(\kappa \). The sequence \(\{ \Delta_i \}^\kappa \) will be defined as before; with the extra proviso that at any limit ordinal \(\lambda \leq \kappa \), \(\Delta_i \) will be \(\bigcup_{i \in \lambda} \Delta_{\alpha(i)} \). A natural model will be constructed from \(\bigcup_{i \in \lambda} \Delta_{\alpha(i)} \) as before; it will have at most \(\kappa \) members. Thus we shall have generalized the previous theorems for languages of cardinality \(\kappa \). Most importantly, we shall have proved the following theorem.

Downward Löwenheim-Skolem Theorem
Any set of sentences in a language of an infinite cardinality \(\kappa \) which has a model has a model of cardinality \(\leq \kappa \).

Now let \(\text{Th}(M) \) be the set of sentences (in a given language) true in \(M \).

Upward Löwenheim-Skolem Theorem
Let \(M \) be a model of infinite cardinality \(\kappa \) for a language \(L \) of cardinality \(\leq \kappa \). Then \(\text{Th}(M) \) has a model of any cardinality \(> \kappa \).

Proof: Let \(\alpha_1, ..., \alpha_n \) be all the members of \(M \). Introduce new corresponding names \(a_0, ..., a_n \) to form the model \(M \) of the augmented language \(L \). Let \(L_n \) result by augmenting \(L \) with further new names \(b_0, ..., b_n \). Let \(\Delta \) be the set of all sentences of \(L \) true in \(M \). Let \(\Gamma \) be the set of inequations \(\{ b_i = b_j \mid \mu < v < \kappa \} \). To show each finite subset of \(\Delta \cup \Gamma \) has a model it suffices to show that if \(\Theta \) is a finite subset of \(\Gamma \) then \(\Delta \cup \Theta \) has a model. Indeed, since \(\Theta \) will involve only finitely many of the names \(b_0, ..., b_n \), these finitely many names can be made to name distinct members of \(M \), and the remaining ones can be made to name any members of \(M \), we please. The result is obviously a model of \(\Delta \cup \Theta \). Thus by compactness for languages of cardinality \(\kappa \), \(\Delta \cup \Gamma \) has a model which, given the membership of \(\Gamma \), has at least \(\kappa \) members. By the Downward Löwenheim-Skolem Theorem for languages of cardinality \(\kappa \), \(\Delta \cup \Gamma \) has a model with exactly \(\kappa \) members. Since \(\text{Th}(M) \equiv \Delta \) our result follows.

Although stronger conclusions may be drawn from these results than those drawn below, we are presently interested only in extracting the full Löwenheim-Skolem Theorem for countable languages.

Löwenheim-Skolem Theorem for Countable Languages
Any set of sentences which has a model has a model of every infinite cardinality.

Proof: Immediate from the last two theorems.

6.5 Corollaries to compactness. We consider now some consequences of the compactness theorem. We consider only countable languages.

Compactness Corollary I
Any set of sentences with arbitrarily large finite models has an infinite model.

Proof: Suppose \(\Delta \) has arbitrarily large finite models. Adjoin infinitely many new names \(a_0, a_1, ... \) to the language of \(L \). Every finite subset of \(\Delta \cup \{ \sim a_i = a_j \mid i < j \} \) has a model. For, if \(k \) is the largest index of new names occurring therein we can let \(a_0, ..., a_k \) name distinct members within some model of at least \(k + 1 \) members. Thus by compactness \(\Delta \cup \{ \sim a_i = a_j \mid i < j \} \) has a model, which must be infinite.

It follows that no set of sentences is true in all and only finite models. Another interesting result, which we cannot prove here, is Trakhtenbrot's Theorem: The set of sentences true in all finite models is not effectively enumerable. We explain effective enumerability in Chapter 7.

Let \(E_n \) be the sentence \(\exists x_1 \ldots \exists x_n (\sim x_1 = x_2 \& \ldots \& \sim x_{n-1} = x_n) \).

\(E_n \) says 'There are at least \(n \) individuals'. The set \(\{ E_1, E_2, ... \} \) is satisfied in all and only infinite models. But no sentence is satisfied. For, if \(\varphi \) were such a sentence, then \(\sim \varphi \) would be true in all and only finite models, contrary to the result above.

Compactness Corollary II
No set of sentences (involving the two-place predicate \(R \)) is satisfied in all and only those models in which \(R \) represents a well-founded relation on the domain. (\(R \) represents a well-founded relation on the domain of \(M \) iff there is no infinite sequence \(\alpha_n \) of members of \(M \) with \((\alpha, \alpha) \in M(R) \) for \(i > j \).)
Proof. Suppose Γ is a set of sentences true in all and only those models in which R represents a well-founded relation. Consider the set Δ of axioms for a strict total ordering by R with a terminal element, in which every non-initial element has an immediate predecessor:

$$
\forall y \forall x (Rxy \supset \neg Ryx) \\
\forall x \forall y (x = y \lor Rxy \lor Ryx) \\
\forall y \forall z ((Rxy \land Ryz) \supset Rxz) \\
\exists x \forall y (Rxy \supset x = y) \\
\forall x (\exists y Rxy \supset \exists z (Ryz \land \neg Rxz)).
$$

Since every finite model of Δ would satisfy Γ and since there are arbitrarily large finite models of Δ, there would be arbitrarily large finite models of $\Delta \cup \Gamma$. Thus $\Delta \cup \Gamma$ would have an infinite model. But in every infinite model of Δ R cannot represent a well-founded relation. For, in such a model an infinite descending R-chain is constructible from the terminal element of the ordering by taking immediate predecessors. Thus no such set as Γ exists.

6.6 Kripke semantics for first order intuitionistic logic. We recall the discussion in Sec. 5.8 of the philosophical motivation for Kripke's semantics for propositional logic. The discussion extends to first order logic with the following extra observations.

A canonical proof of $\forall x \psi$ consists in a method that, applied to any term t known to denote an object, would yield a proof of ψt. A canonical proof of $\exists x \psi$ consists in a proof of ψt for some term t known to denote an object.

The evolution of my present position i into some future position j might involve the 'construction' of new objects by way of coming to know of certain terms that they do denote. (In some intuitionists' view mathematical objects are the very terms that denote them — concrete arrangements of marks on a piece of paper.) New atomic axioms and rules that hold at i can involve only such terms as are known by i to denote. Once an object has been 'constructed', it exists for ever after.

Thus in the characterization of first order Kripke models each index $i \in I$ is assigned a set of atomic sentences of the form P_1, \ldots, P_l. Only the terms involved in atomic sentences in i are to be taken as denoting at i. If at i we know only that t denotes, and know nothing else at all about its denotation, then the identity $t = t$ will be the only atomic sentence involving t in i. $\langle i \rangle$ will be the set of terms involved in the atomic sentences comprising i. Obviously $\langle i \rangle$ can be determined from i. If $i \leq j$ then $\langle i \rangle \subseteq \langle j \rangle$ and $j \subseteq \langle j \rangle$. For each t in $\langle i \rangle$, $(t = t)$ is in i.
with \(a \) occurring parametrically for \(\exists \cdot A \), and so \(\Delta, \exists \cdot A, \exists \cdot A \phi \).

Thus \(\Delta, \exists \cdot A, \exists \cdot A \phi \). Hence \(\Psi = \Delta, \exists \cdot A \phi \), by construction and \(\Delta, A \exists \cdot A \phi \), by \(\exists \cdot A \phi \). But now \(\Delta, \exists \cdot A \phi \), by \(\exists \cdot A \phi \). Hence by transitivity \(\Delta, \exists \cdot A \phi \).

Therefore \(\exists \cdot A \phi \), whence \(\phi \epsilon \bar{\Delta} \) and \(\exists \cdot A \phi \). The same argument as in the propositional case shows that \(\bar{\Delta} \) is \(R \)-closed and disjunctive. It remains to show that \(\bar{\Delta} \) is existential. So suppose \(\exists \cdot A \phi \epsilon \bar{\Delta} \). Then \(\exists \cdot A \phi \epsilon \bar{\Delta} \). Hence by construction \(\phi \epsilon \bar{\Delta} \) for some \(a \). Moreover since \((a = a) \epsilon \bar{\Delta} \), \(a \) is involved in the atomic closure of \(\bar{\Delta} \).

The proof of the Intuitionistic Satisfiability Theorem now requires only two extra clauses in the inductive step, to deal with quantified sentences:

Suppose \(\exists \cdot A \phi \epsilon \bar{\Delta} \). Since \(\bar{\Delta} \) is \(R \)-intuitionistic, \(\psi \epsilon \bar{\Delta} \) for some term \(t \) in the atomic closure of \(\bar{\Delta} \). By IH \(\bar{\Delta} \psi \). So (by Corollary 2 to the Soundness Theorem) \(\bar{\Delta} \exists \cdot A \phi \). The converse is direct.

Finally suppose \(\forall \cdot A \phi \epsilon \bar{\Delta} \). Take any \(\Gamma \epsilon \Delta \). So \(\exists \cdot \Delta \epsilon \Gamma \) and \(\exists \cdot \Delta \epsilon \Gamma \). Suppose \(t \) is involved in \(\Gamma \). Since \(\forall \cdot A \phi \epsilon \exists \cdot \Delta \), \(\Gamma \exists \cdot A \phi \). Thus \(\psi \epsilon \exists \cdot \Delta \) since \(\Gamma \epsilon \exists \cdot \Delta \)-closed. By IH \(\Gamma \psi \). So by defn. of \(\Gamma \), \(\Delta \psi \epsilon \forall \cdot A \phi \). Conversely suppose that \(\forall \cdot A \phi \epsilon \bar{\Delta} \). So \(\exists \cdot \Delta \forall \cdot A \phi \). Take some name \(a \) not involved in \(\bar{\Delta} \). We cannot have \(\exists \cdot \Delta \phi \), since \(a \) would be parametral for \(\exists \cdot A \phi \). Now by the maximalization theorem let \(\Gamma \epsilon \bar{\Delta} \) be an \(R \)-intuitionistic set not containing \(\phi \), and involving \(a \) in its atomic closure. By IH \(\Gamma \phi \). Hence by defn. of \(\bar{\Delta} \), \(\bar{\Delta} \exists \cdot A \phi \).
7.1 Computable and recursive functions; Church’s thesis. Several results in this chapter call for a preliminary discussion of the notion of ‘effective method’ and ‘computable function’; and the formal notion of ‘recursive function’ proposed as a precise explanation of the latter. Proofs of the many results of recursive function theory are, however, beyond the scope of this book. Our aim here is simply to state and prove one required result, namely the Representability Theorem, and then to concentrate on its application in the so-called ‘diagonal method’ in proofs of the undecidability of logic and arithmetical theories. For a full development of recursive function theory the reader is referred to the excellent sources listed in the bibliography.

An effective method or operation is one which applies to objects of a given class in a mechanical or algorithmic way to produce as value some object (in, perhaps, some other class). In principle an effective method is one that can be carried out (or performed, or applied) by a suitably designed and programmed machine governed by deterministic laws and not subject to any limitations of size or malfunction. In other words, in applying an effective method there is no need for creativity, ingenuity, insight, random choice, divination or divine intervention. An effective method should consist in a recipe or programme for computation that unequivocally determines, at any stage of computation, how the computation shall proceed and terminate.

Examples of effective operations are those represented by the following arrows.

1. Natural numbers \(m, n\) \(\rightarrow\) the sum of \(m\) and \(n\)
2. Sequence of symbols \(\varphi\) \(\rightarrow\) the answer ‘yes’ or ‘no’ to the question ‘Is \(\varphi\) a sentence?’
3. Natural number \(n\) \(\rightarrow\) the answer ‘yes’ or ‘no’ to the question ‘Is \(n\) a proof?’
4. Array of sentences \(\Pi\) \(\rightarrow\) the answer ‘yes’ or ‘no’ to the question ‘Is \(\Pi\) a proof?’

(1) and (3) are numerical examples, while (2) and (4) involve objects such as sequences of symbols and arrays of sentences. However, all finite syntactical objects – expressions, sequences of expressions, tree-like arrays of sequences of expressions – can be coded as natural numbers. This coding is known for historical reasons as Gödel numbering, after its inventor. For each type \(\Phi\) of syntactic objects we have a coding function \#. Given any \(\varphi\in\Phi\) we can effectively determine \(#(\varphi)\), the code number of \(\varphi\). No two distinct objects have the same code number. Given a natural number and a type one can effectively determine whether the number codes an object of that type, and, if so, which object. There is a variety of coding functions in the literature. We shall be interested only in their general properties, and not in any of their details.

Codings are presently defined so that not all numbers need be code numbers (for a given class \(\Phi\) with its coding \#). That is, \# need not map \(\Phi\) onto \(\mathbb{N}\). This can in general be remedied as follows. First define \(\gamma(n)\), the number of objects in \(\Phi\) whose code numbers are less than or equal to \(n\):

\[
\begin{align*}
\gamma(0) & = 1 \quad \text{if } \#\varphi = 0 \text{ for some } \varphi \in \Phi \\
 & = 0 \quad \text{otherwise}
\end{align*}
\]

\[
\gamma(n + 1) = \gamma(n) + 1 \quad \text{if } \#\varphi = n + 1 \text{ for some } \varphi \in \Phi
\]

Then define \# as a coding from \(\Phi\) onto \(\mathbb{N}\) as follows:

\[
\#(\varphi) = \gamma(\#(\varphi) - 1).
\]

\# is obviously a one-one mapping from \(\Phi\) onto \(\mathbb{N}\) effective in both directions.

Henceforth we shall assume codings of \(\Phi\) to be onto \(\mathbb{N}\), without loss of generality. The inverse \(#^{-1}\) of a coding \# may therefore be regarded as an effective enumeration \(\#^{-1}(0), \#^{-1}(1), \ldots\) of all the members of \(\Phi\). Trivially, \(\mathbb{N}\) is coded by the identity map.

We shall be interested only in effective operations on such objects as can be coded as natural numbers. Therefore we confine our attention to effective operations from numbers to numbers, which are called computable functions. For the sake of simplicity we shall assume that computable functions are everywhere defined. That is, for each sequence \(\bar{a}\) of natural numbers, the value \(f(\bar{a})\) of any computable function \(f\) exists (and can be computed). We shall also deal with only one-place functions wherever the discussion extends in an obvious way to functions of more than one argument.

Suppose \(P\) is a property of objects of type \(\Phi\). Then we define \(c_P\), the characteristic function of \(P\), as follows:

\[
\begin{align*}
c_P(\#\varphi) & = 0 \quad \text{if } P(\varphi) \\
c_P(\#\varphi) & = 1 \quad \text{if } \neg P(\varphi)
\end{align*}
\]

\(P\) is said to be decidable just in case \(c_P\) is computable.

No explanation of effectiveness can serve precisely to define the class of computable functions, for it is a strictly informal notion. The remedy is to give a precise mathematical definition of some class of functions maintained to coincide exactly with the class of computable functions. These precisely defined functions are called recursive
functions. The thesis that a function is computable if and only if it is recursive is called Church’s Thesis (with emphasis on the bolder half).

Various definitions of recursive have been given by different authors. They have arrived at their definitions from different directions, yet all extant definitions have been shown to define the same class of functions. Thus it appears that the notion of computable function is highly natural and invariant with respect to different attempts formally to characterize it. It is highly unlikely that several radically different but provably coincident explications of the notion should all fall short in exactly the same way. The co-extensiveness of all definitions of recursive endows Church’s Thesis with considerable plausibility. There are three main kinds of definition of recursive.

(i) Definitions in terms of computing machines. These were arrived at as a result of analysing the essential features of deterministic computation. A function is said to be recursive if and only if some machine of a well-defined kind will compute as output its value for any given arguments as input. It is this kind of definition that makes Church’s Thesis prima facie most plausible.

(ii) Inductive definitions. Certain basic functions (identity, constant functions, projection functions, succession, addition, etc.) are defined to be recursive, and certain operations (composition, etc.) are specified that form recursive functions from recursive functions. A function is defined to be recursive if and only if it can be built up from the basic functions by means of these operations. It is this kind of definition that is mathematically most readily understood and tractable, and that is exploited for the proof of the Representability Theorem below.

(iii) Definitions in terms of equational systems. We shall give this definition in detail, since we shall exploit it below in our first proof of the undecidability of first order logic.

Consider a language with 0, s(), + and infinitely many n-place function signs for each n. We shall call it a language of first order functional logic. 0, s(0), s(s(0)), ... are the numerals respectively for the natural numbers 0, 1, 2, ... We shall write n for the numeral for the natural number n. An equation will be either a sentence of the form $t = u$ or the universal closure of a formula of the form $t = u$. A recursion is a finite set R of equations such that

1. if $R + m = m$ then $m = n$, and
2. for any k-place function sign f involved in R, and any numbers n_1, \ldots, n_k there is a unique number m such that $R + f(n_1, \ldots, n_k) = m$.

By (2) we may naturally associate a function f^* with f:

$$f^*(n_1, \ldots, n_k) = m \iff R + f(n_1, \ldots, n_k) = m$$

A recursive function is one of the form f^* for some recursion R involving f.

Example. Consider the recursion R on the left, with its members re-written on the right in a more familiar way:

$$\forall x f(x, 0) = x$$
$$\forall x f(x, s(y)) = s(f(x, y))$$
$$\forall x g(x, 0) = 0$$
$$\forall x g(x, s(y)) = g(x, y) + x$$
$$\forall x h(x, 0) = 0$$
$$\forall x h(x, s(y)) = g(x, h(x, y))$$

Then f^* is addition, g^* is multiplication and h^* is exponentiation.

That a recursive function in sense (i) is computable is seen as follows. Suppose the function is f^*. To compute $f^*(\bar{n})$ for any \bar{n} enumerate all proofs whose undischarged assumptions are in R. After a finite time (by (2)) we shall find one with conclusion $f(\bar{0}) = m$, for some unique natural number m; which is therefore $f^*(\bar{n})$, by (1).

As can be expected, the converse is more difficult to make plausible. All one can point to in the case of recursive functions in sense (i) is the fact that in general a proof (in normal form) of $f(\bar{n}) = m$ from R will consist of \forall-eliminations followed by substitution of identicals in equations involving terms built up from 0, s and function letters involved in R. Effecting these substitutions is tantamount to ‘operating on’ the results of ‘prior computations’ (corresponding to the appropriate sub-proofs) so as to compute overall the value m for $f^*(\bar{n})$. Since the proof is finite, only finitely many prior computations will be involved. That this very general feature of computation can always be enshrined in proofs from an appropriate recursion is the gist of the claim that every computable function is recursive.

As an example, the following proof in the more familiar notation (with parentheses omitted wherever possible) establishes that $1^1 = 1$:

$$\forall y x^y = x \cdot x$$
$$\forall y s^0 = s0$$
$$\forall x s^0 = s0$$
$$\forall x y s^x = (s^0 y) + x$$
$$\forall y s^0 = s0$$
$$\forall x y s^0 = s0$$

By (2) we may naturally associate a function f^* with f:
7.2 Undecidability of first order functional logic. The natural model \(\mathbb{N} \) consists of the natural numbers with 0 (the number) named by 0 (the name), and with successor, addition and multiplication respectively represented by \(s, + \) and \(\cdot \). The first order language whose only distinguished extra-logical expressions are 0, \(s, + \) and \(\cdot \) will be known as the language of arithmetic. Given a recursion \(R \) we may extend the natural model \(\mathbb{N}_a \) by assigning to each function sign \(f \) involved in \(R \) the function \(f_a \).

Lemma 1. Any equation deducible from \(R \) is true in \(\mathbb{N}_a \).

Proof. By induction on the number of occurrences of universal quantifiers plus the number of occurrences of function signs other than 0 occurring in an equation.

Basis. If \(R \vdash m = n \) then by \((1) \) \(\mathbb{N}_a \vdash m = n \).

Inductive step. Case (i): \(R \vdash t = u \) where \(t = u \) involves a term \(h(\bar{a}) \). By (2) there is a unique \(m \) such that \(R \vdash h(\bar{a}) = m \). So \(h(\bar{a}) \) and \(m \) denote the same member of \(\mathbb{N}_a \); and by substitutivity \(R \vdash (t = u)^m \). By IH: \((t = u)^m \) is true in \(\mathbb{N}_a \); so \(t = u \) is also.

Case (ii): \(R \vdash \forall x \phi \). For all \(n \) \(R \vdash \phi n \) whence by IH \(\mathbb{N}_a \vdash \phi n \). Thus \(\mathbb{N}_a \vdash \forall x \phi \).

We are presently dealing with a first order functional logic, to which we now add just one one-place predicate \(P \). Call the resulting language \(L \).

Lemma 2. For any decidable set \(D \) of natural numbers there is a sentence \(\psi \) of \(L \) such that for all \(n \in D \) \(\psi(n) \) is true.

Proof. By Church’s Thesis, for some recursion \(R \) involving \(f_n \) the characteristic function of \(D \). Extend \(\mathbb{N}_a \) to \(M \) by assigning \(P \) the extension \(D \). Obviously \(M \vdash \forall x (fx = 0 \Rightarrow Px) \). By Lemma 1, \(M \vdash \forall x (fx = 0 \Rightarrow Px) \).

Theorem. Theoremedness in \(L \) is undecidable.

Proof. By a diagonal construction. Suppose for reductio that theoremedness in \(L \) is decidable. Let \(\psi_0, \psi_1, \ldots \) be an effective enumeration of sentences of \(L \). Then \(\psi_n \) is a decidable set of natural numbers. By Lemma 2 for some \(k \vdash \psi_k \Rightarrow P_k \) iff \(\psi_k \vdash P_k \) (for all \(n \)). In particular \(\psi_k \vdash P_k \) iff \(\psi_k \vdash P_k \), a contradiction.

In later sections we shall obtain further undecidability results for languages with a more restricted vocabulary than the language \(L \) above. Inspection of our proof above reveals that we have proved undecidability when the deductive system contains only the rules for identity and the elimination rules for \(\forall \) and \(\exists \). Thus both classical and intuitionistic theoremedness in \(L \) is undecidable.

7.3 Properties of theories. Henceforth, unless otherwise indicated, we shall be concerned with first order languages with identity with a classical underlying logic. Theories will be deductively closed sets of sentences (in a given language). In this section we shall define several interesting properties of theories and indicate their general interrelationships.

(1) Completeness.

This property was called maximality in the previous chapter, so as not to confuse it with completeness of the underlying logic that was being discussed there. Now we define: a theory \(\Delta \) is complete iff for all \(\phi \) (in the language of \(\Delta \)) either \(\phi \in \Delta \) or \(\neg \phi \in \Delta \).

(2) Categoricity (in power).

\(\Delta \) is categorical iff any two models of \(\Delta \) are isomorphic. By the Löwenheim-Skolem Theorem, however, no theory with an infinite model is categorical. Thus we define a narrower notion:

\(\Delta \) is categorical in power \(\kappa \) (\(\Delta \) is \(\kappa \)-categorical) iff any two models of \(\Delta \) with exactly \(\kappa \) members are isomorphic.

A definitive way of showing that a theory (usually presented axiomatically) is consistent is to exhibit a finite model of the theory. Thus we shall be interested in the property

(3) \(\Delta \) has a finite model.

How does one know when one ‘has’ a theory? A theory may be presented in a very abstract way, for example

the set of sentences of the language of arithmetic which are true in the natural model \(\mathbb{N} \)

or it may be presented axiomatically, either by listing its axioms or providing a general method for recognizing when a sentence is an axiom. The theory would then be understood as the deductive closure of those axioms. A third way, which will provide our definition of axiomatizability, is simply to give a method for listing all theorems of the theory. The method must be effective:

(4) \(\Delta \) is axiomatizable iff there is an effective enumeration of all the members of \(\Delta \).

A stronger condition than axiomatizability is that of decidability:

(5) \(\Delta \) is decidable iff there is an effective method for deciding, given any sentence of the language of \(\Delta \), whether it is in \(\Delta \).

The next properties to be formulated are of special interest in arithmetical theories, but can be defined reasonably abstractly. We suppose that the language of \(\Delta \) contains an effectively enumerable sequence \(0, 1, 2, \ldots \) of distinct terms. We say that

(6) \(\Delta \) is representing iff for any decidable property \(P \) of natural
numbers there is a formula ϕx of the language of Δ such that
for any $n P(n)$ iff $\Delta \vdash \phi n$.

Note that any representing theory is consistent.

(7) Δ is strongly representing iff for any decidable property P of
natural numbers there is a wff ϕx in the language of Δ such
that for any natural number n if $P(n)$ then $\Delta \vdash \phi n$ and if
not $P(n)$ then $\Delta \vdash \neg \phi n$.

Note that any consistent strongly representing theory is representing,
and any consistent extension of a strongly representing theory is
strongly representing.

Let $\psi \rightarrow \Theta$ be a mapping of sentences to closed terms (in
the language of Δ). Given a formula $\phi(x)$ with one free variable we shall
say

(8) Δ is self-representing (via Θ) iff
for every sentence $\psi \phi(\Theta) \in \Delta$ iff $\phi \in \Delta$.

Let $\theta \rightarrow \Theta$ be a mapping of formulae with one free variable to
closed terms (in the language of Δ). Given a formula $\lambda(x,y)$ we shall say

(9) Δ is a diagonal for λ iff
for every formula θ with one free variable, $\lambda(\Theta, a) \vdash \theta \Theta / a$,
with λ parametrical.

Thus a diagonal Δ represents a mapping that assigns to each
formula θ with one free variable the sentence $\theta(\Theta)$, which results from
substituting the associated term Θ for the free variable in θ. We do
not concern ourselves here with the nature of the mappings. In
actual applications below Θ will be $\theta \phi$ (the numeral for the code
number of ϕ, for some fixed coding θ of sentences) and Θ will likewise
be $\theta \Theta$ (for some fixed coding θ of formulae with one free variable).

7.4 General results. We now have the following general results.

(1) Every decidable theory is axiomatizable.

Proof. Go down an effective enumeration of sentences in the language
of the theory, deciding which are theorems of the theory, thereby
forming an effective enumeration of the latter.

(11) Axiomatizability is deducibility from a decidable set.

Proof. Suppose Δ is given by an effective enumeration ϕ_0, ϕ_1, \ldots. Let
ψ_\ast be the n-fold conjunction of ϕ_\ast with itself. Obviously $\Delta \ast$ is
decidable and logically implies just the members of Δ. Conversely,
suppose Δ is the set of all conclusions deducible from a decidable set.
We can effectively enumerate all proofs in the language (augmented
by infinitely many new names for proof-theoretical purposes).
We can effectively determine of each proof whether its undischarged
assumptions are in the given decidable set. Finally we can effectively
determine of each proof what its conclusion is. Thus we can form an
effective enumeration of all the members of Δ.

(11) Every complete axiomatizable theory is decidable.

Proof. Suppose the complete theory Δ is effectively enumerated by
ϕ_0, ϕ_1, \ldots. Given any sentence ψ we know that either ψ will occur as
some ϕ_i or that $(\neg \psi)$ will so occur. Thus we can effectively determine
whether ψ or $(\neg \psi)$ is in Δ.

(11) Every theory categorical in some infinite power, with no finite
models, is complete.

Proof. Suppose Δ is categorical in the infinite power κ and has no
finite models. Suppose $\psi \in \Delta$. Then $\Delta \vdash \neg \psi \rightarrow \ast$. Thus $\Delta, \neg \psi$ has a model,
which must be infinite. By the Löwenheim-Skolem Theorem, $\Delta, \neg \psi$ has a model
of power κ. Similarly, if $(\neg \psi) \in \Delta$ then $\Delta, \neg \psi$ has a model
of power κ. But these models would be non-isomorphic, contrary to
κ-categoricity. So either $\psi \in \Delta$ or $(\neg \psi) \in \Delta$.

(11) Every representing theory is undecidable.

Proof. Suppose Δ is representing and, for reduction, decidable. Then
the property $\psi, \phi \in \Delta$ of natural numbers would be decidable, where
ϕ_0, ϕ_1, \ldots is an effective enumeration of all formulae with one free
variable. Since Δ is representing there would be some such formula
ψ_0 such that for all $n \psi_0 \in \Delta$ iff $\phi_0 \in \Delta$. In particular we have
$\phi_0 \in \Delta$ iff $\psi_0 \in \Delta$, a contradiction.

This argument also establishes that any consistent extension of a
strongly representing theory is undecidable.

(11) Every consistent self-representing theory with a diagonal
is incomplete.

Proof. Suppose (1) for every sentence $\psi \phi(\Theta) \in \Delta$ iff $\psi \phi \Delta$; and
(2) for every formula θ with one free variable
$\lambda(\Theta, a) \vdash \theta \Theta / a$.

Let $\iota(y)$ be the formula $\forall x \lambda(x, y) \vdash \phi(x)$ and let ν be the sentence
$\iota(\iota)$. The following two proofs show (3) $\nu \vdash \phi(\nu)$:

\[\begin{align*}
\Delta, \nu &\vdash \iota(\iota) \quad \text{(by defn. of } \nu) \\
\therefore \forall x \lambda(x, \nu) &\vdash \phi(x) \quad \text{(by } \Delta, \nu \vdash \phi(x) \text{)} \\
\therefore \phi(\iota) &\vdash \phi(\nu) \\
\therefore \phi(\nu) &\vdash \phi(\iota) \\
\therefore \forall x \lambda(x, \iota) &\vdash \phi(x), \text{ i.e. } \nu.
\end{align*} \]
Intuitively, given the diagonal δ, the sentence y 'says of itself' (via the mappings \sim, \sim') that it lacks ϕ. Notice that the interdeducibility result just given does not depend on any condition on ϕ. If, however, we assume (1) that ϕ is a representing predicate for Δ—then we can show that neither y nor $\sim y$ is in Δ.

For, suppose $y \in \Delta$. By (1) $\phi(y) \in \Delta$, and by (3) $\sim \phi(y) \in \Delta$, thereby rendering Δ inconsistent.

Next, suppose $\sim y \in \Delta$. By (3) $\phi(y) \in \Delta$, whence by (1) $y \in \Delta$, again rendering Δ inconsistent.

This establishes our result.

7.5 The theory of dense strict unbounded orderings. In this section we investigate the properties of the theory of dense strict unbounded orderings, given by the following axioms.

\[
\begin{align*}
\forall x \forall y (x < y & \Rightarrow \sim y < x) \\
\forall x \forall y \forall z ((x < y & x < z) & \Rightarrow x < z) \\
\forall x \forall y (x = y & \forall x y < x & y < x) \\
\forall x \forall y (x < y & \exists z (x < z & z < y)) \\
\forall x (\exists y y < x & \exists y x < y).
\end{align*}
\]

Theorem. The theory given by the axioms above is \aleph_0-categorical.

Proof. Suppose A and B are countably infinite domains endowed with orderings satisfying the axioms above. By countability there is a mapping f of \mathbb{N} onto A and a mapping g of \mathbb{N} onto B. Now define two mappings f', g' of \mathbb{N} onto A, B respectively by means of the following interlocking clauses:

- For $n = 2k$
 - (i) let $g(n) = g(k)$
 - (ii) choose $f'(n)$ to correspond to $g(k)$

- for $n = 2k + 1$
 - (i) let $f'(n) = f(k)$
 - (ii) choose $g'(n)$ to correspond to $f(k)$

where the 'correspondence' in question ensures that the induced map given by $f'(j) \rightarrow g'(j)$, for $j \leq n$, is an order isomorphism between $(f'(0), \ldots, f'(n))$ and $(g'(0), \ldots, g'(n))$.

Choices (ii) are always possible because of the density and unboundedness of each ordering. Since f and g are onto A and B respectively, so are f' and g' by (i). Thus the induced map given by $f'(j) \rightarrow g'(j)$, for all j, is an order isomorphism between A and B.

The theory in question obviously has no finite models. Therefore by (iv) it is complete. It is axiomatized. Therefore by (iii) it is decidable.

7.6 Non-categoricity of arithmetic. Another non-trivial theory with no finite models is the theory of successor arithmetic, given by the following axioms.

\[
\begin{align*}
(1) & \quad \forall x \sim 0 = s(x) \\
(2) & \quad \forall x \forall y (s(x) = s(y) \Rightarrow x = y) \\
(3) & \quad \text{all instances of the induction schema} \\
& \quad (\phi(0) \& \forall x (\phi(x) \Rightarrow \phi(s(x)))) \Rightarrow \forall x \phi(x).
\end{align*}
\]

It is a basic assumption of our formal semantics that all names denote and all function signs represent functions everywhere defined on the domain. With an arrow to represent succession we know by (1) that we cannot have

\[
\phi \quad 0
\]

Thus we have $\phi \rightarrow \neg \psi$. By (2) we cannot have $\phi \rightarrow \neg \psi$ and by (1) we cannot have $\psi \rightarrow \phi$; so, since the successor function is everywhere defined, we have $\phi \rightarrow \psi$. Repeating these considerations we know we must have an infinite progression starting with 0 within any model of our axioms. Since the successor function is single valued, there will be only one such progression in any such model. Its members will be called the natural numbers of that model.

The property of being a natural number is that of 'being finitely many steps of succession away from 0'. Thus 0 is a natural number, and if n is a natural number then so is $s(n)$. Thus if we could take the property of being a natural number as a substitution instance of ψ in the induction schema (3) we would have that every individual in any model of the axioms is a natural number (within that model). Thus all models of the theory would be isomorphic to the infinite progression above. We would have ruled out the possibility of 'non-natural' members; in other words, we would have ensured that the natural numbers are the only individuals in any model.

The problem, however, is that we may substitute for ψ in (3) only such predicates as are expressible in the language. It turns out, indeed, that '... is a natural number' is not one of these. This is the upshot of the following theorem.

Theorem. Th(\mathbb{N}) is not \aleph_0-categorical.

Proof. Let a be a name governed by the inequations $\sim a = 0, \sim a = s(0), \ldots$. Call the set of these inequations Δ. If $\sim a = s(0)$ is the last of them to occur in a finite subset of Th(\mathbb{N}) Δ then by letting a denote the same number as $s^{*1}(0)$ we have in the model \mathbb{N} thus extended a model of the finite subset in question. Thus by compact-
ness $\text{Th}(\mathbb{N} \cup \Delta)$ has a model. By the Löwenheim-Skolem theorem $\text{Th}(\mathbb{N} \cup \Delta)$ has a model of cardinality \aleph_0. Such a model must contain a member named by a which is not a natural number of that model.

Thus not even all first order truths about the natural number sequence ensure that a countable model of those truths consists only of the natural number sequence.

7.7 Second order arithmetic and logic

In a second order language of arithmetic, which allowed quantification over predicates, we could express the principle of induction by the single sentence

$$\forall x (\phi(0) \land \forall y (\phi(y) \rightarrow \phi(x))) \rightarrow \forall x \phi(x)$$

If we interpret second order quantification, when giving our formal semantics, as over all subsets of the domain then in our arithmetical example the numbers would form such a subset and would therefore, by the principle of induction, exhaust the domain. Thus the set Σ of second order axioms for successor arithmetic:

- $\forall x \neg 0 = s(x)$
- $\forall x \forall y s(x) = s(y) \rightarrow x = y$
- $\forall x (\phi(0) \land \forall y (\phi(y) \rightarrow \phi(x))) \rightarrow \forall x \phi(x)$

would have only one model (up to isomorphism) in the natural number sequence. So, in contrast to the first order case, second order successor arithmetic is \aleph_0-categorical.

With the set Δ of inequations as above, and by the same argument as given there, every finite subset of $\Sigma \cup \Delta$ has a model. Since, however, no model of $\Sigma \cup \Delta$ is isomorphic to the natural number sequence it follows that $\Sigma \cup \Delta$ has no model.

Thus second order logical consequence is not compact. In the case of second order logic, therefore, we cannot have the general completeness result that any logical consequence of a set of premisses is deducible therefrom. The possibility remains, however, that for finite sets of premisses this result would still hold. But we shall see below that the set of all second order logical truths is not axiomatizable.

Thus the increase in expressive power that is obtained by allowing second order quantification and that is reflected by the categoricity of second order successor arithmetic, is offset by a crucial loss of deductive power.

7.8 Completeness and decidability of successor arithmetic

In 7.5 we proved the theory of strict dense unbounded orderings to be complete, hence decidable, by showing that it was \aleph_0-categorical. This method is not available in the case of first order successor arithmetic, which we have shown not to be \aleph_0-categorical.

There is, however, another method for proving completeness and decidability of the theory of successor arithmetic. This is known as the method of quantifier elimination for reasons which will become apparent by Lemma 8 below. The method tells us how to find, for any sentence of the language, a provably equivalent quantifier-free sentence which, because it is quantifier-free, is readily decidable. In applying the method we need some intimacy with the internal workings of the theory, which it is the purpose of subsequent lemmata to impart. We shall also require the following preliminaries.

s^t will be the term $s(s \ldots (s \ldots 0))$ with n occurrences of s to the left of t. Thus n is s^0. We shall write $\mathfrak{a} \phi_1 \phi_2$ for the conjunction of $\phi_1, \ldots \phi_n$ (where the ordering of bracketing does not matter). From now on I shall omit brackets whenever possible.

For ease in writing out proofs we shall turn the axioms of successor arithmetic into rules of inference:

1. $0 = s^t$
2. $s^t = s^u$
3. $\mathfrak{a} \phi(t)\ x = u \frac{\phi(x)}{\phi(a)}$

where a does not occur in any assumption other than $\phi(a)$ on which $\phi(a)$ depends.

Obviously any consequence of the axioms can be proved (from no assumptions) by using these rules, and only such consequences can be so proved. We shall use \vdash in the new, extended sense arising out of the incorporation of the rules above.

Lemma 1. If $m = n$ then $\vdash \neg s^t t = s^t$.

Proof. By repeated application of Rule (2) followed by an application of rule (1) prove \neg from the assumption $s^t \not= s^t$, and then apply \neg-introduction.

Obviously if $m = n$ then $\vdash s^t t = s^t$ (reflexivity of identity).

Lemma 2. $\mathfrak{a} \neg b = t \vdash \exists x b = s^t x$.

(Example: $\neg b = 0 \land \neg b = s^0 \vdash \exists x b = s^t x$.)

Proof. By induction on n.

Basis. We establish $\neg b = 0 \vdash \exists x b = s^t x$ by means of the following two proofs:
Inductive hypothesis. \(\sim b \leftrightarrow n \land (\sim b \equiv \sim i) \land \exists x \ b = s^* x \)

Inductive step. We establish \(\sim b = n \land (\sim b \equiv \sim i) \land \exists x \ b = s^* x \) by means of the following two proofs:

\[
\frac{\sim b = n \land (\sim b \equiv \sim i) \land \exists x \ b = s^* x}{\exists x \ b = s^* x}
\]

IH \(\sim b = \sim n \land (\sim b \equiv \sim i) \land \exists x \ b = s^* x \)

and

\[
\frac{\sim b = \sim n \land (\sim b \equiv \sim i) \land \exists x \ b = s^* x}{\exists x \ b = s^* x}
\]

Lemmas 3. \(\forall x_1 \ldots \forall x_n \exists y \sim y \equiv x \)

Proof. By induction on \(n \).

Basis. We have the proof:

\[
\frac{\sim 0 = 0 \land (\sim 0 \equiv \sim 1) \land \exists x \ b = s^* x}{\Sim 0 = 0 \land (\Sim 0 \equiv \Sim 1) \land \exists x \ b = s^* x}
\]

where \(\forall l \) will contain many applications of dilemma rounding off a consideration of all possible cases of immediate succession between the \((n + 1)\) objects \(a_1, \ldots, a_n, c \) under consideration. In each case at least one of \(a_1, \ldots, a_n, c \) will not be the immediate predecessor of any of the others. Its successor will then yield to \(\exists y \) in the conclusion of that case. By the applications of dilemma mentioned, this conclusion common to each case will be brought down as the displayed conclusion of \(\forall l \) above. The details are straightforward but too lengthy to display exhaustively on the page. Lemma 3 generalizes easily to Lemma 4. \(\forall x_1 \ldots \forall x_n \exists y \sim y \quad x \)

Lemma 5. Let \(\psi \) be a conjunction of equations of the form \(t = u \) and inequations of the form \(\sim t = u \), at least one of which involves the name \(a \). Then there is a quantifier-free sentence \(\phi \) not involving \(a \), such that \(\exists x_0 \phi \leftrightarrow \phi \). Moreover any name other than 0 which occurs in \(\phi \) occurs in \(\phi \).

Proof. Each conjunct of \(\psi \) involving \(a \) has one of the forms

1. \(s^a = t \)
2. \(\sim s^a = t \)

(\text{where} \ t \ \text{does not involve} \ a \quad \text{that is,} \ t \ \text{is a numeral or is of the form} \ s^a \ \text{for some name} \ b \ \text{distinct from} \ a \)

3. \(s^a = s^a \)
4. \(\sim s^a = s^a \)

where without loss of generality we consider only the given orderings of terms within the equations and inequations.
Suppose there is a conjunct of form (1) in ψ. Choose such a conjunct with at least: suppose it is $s^a = t$. Consider the sentence

$$\phi = \text{def} \cdot \varphi^* \circ (a \sim t = i)$$

Note that ϕ does not involve a, and involves only such names other than 0 as occur in ψ. The following two proofs show $\exists x \varphi^* \vdash \phi$:

\[\frac{\phi}{s^a = t} \text{ (by A-E's)} \]

\[\frac{\exists x \varphi^*}{s^a = t} \text{ by Lemma 2} \]

\[\frac{\exists x \varphi^* \circ (a \sim t = i)}{\varphi^* \circ (a \sim t = i)} \]

Now suppose there is no conjunct of form (1) in φ. Replace any conjunct of form (3) by $0 = 0$ if $m = n$, and by $\sim 0 = 0$ if $m \neq n$. Replace any conjunct of form (4) by $\sim 0 = 0$ if $m = n$, and by $0 = 0$ if $m \neq n$. Call the sentence which results from φ by these replacements χ. By Lemma 1 we have $\varphi \vdash \chi$. If there are any occurrences of a in χ they are all in conjuncts of form (2). Suppose these are

$$\sim s^a = t_i, \ldots, \sim s^a = t_k$$

Let n be the maximum of n_1, \ldots, n_i. Replace each inequation

$$\sim s^a = t_i$$

in χ by the inequation

$$\sim s^a = s^{n_1} l_i$$

Then χ results from χ by these replacements χ^*. By Rule (2) we have $\chi \vdash \chi^*$. Let φ be the conjunction of all conjuncts of χ^* that do not involve a. Then $\exists x \chi^* \circ \varphi$ is interderivable with

$$\varphi \circ \exists x (\sim s^x = s^{n_1} l_i \ldots \sim s^x = s^{n_i} l_i)$$

But by Lemma 4 the right hand conjunct of the last sentence is provable. Thus $\exists x \chi^* \circ \varphi$. Hence $\exists x \varphi^* \vdash \phi$, where ϕ involves only such names other than 0 as occur in ψ.

Lemma 6. Let $\exists x \varphi$ have ψ quantifier-free. Then there is a quantifier-free sentence ψ such that $\exists x \varphi \vdash \phi$. Moreover any name other than 0 that occurs in φ occurs in ψ.

Proof. Choose a name a not occurring in φ. φ^* is interderidable with a disjunctive normal form $\psi_1 \lor \cdots \lor \psi_m$, where each disjunct φ_i involving a satisfies the hypotheses of Lemma 5. Now let

$$\exists x \psi_1^* \lor \cdots \lor \exists x \psi_m^*$$

be obtained by prefixing existential quantifiers to just those disjunctions that involve a. By Lemma 5 there are quantifier-free sentences ϕ_1, \ldots, ϕ_m not involving a, and involving only such names other than 0 as occur in ψ_1, \ldots, ψ_m, respectively, such that

$$\phi_i \vdash \exists x \psi_i^* \quad (1 \leq i \leq n)$$

Hence we have

$$\phi_1 \lor \cdots \lor \phi_m \vdash \exists x \psi_1^* \lor \cdots \lor \exists x \psi_m^*$$

Furthermore by easy proofs we have

$$\exists x \psi_1^* \lor \cdots \lor \exists x \psi_m^* \vdash \exists x (\phi_1 \lor \cdots \lor \phi_m)$$

Finally we have

$$\exists x (\phi_1 \lor \cdots \lor \phi_m) \vdash \exists x \varphi$$

Thus $\phi = \phi_1 \lor \cdots \lor \phi_m$ is as required.

Lemma 7. Any sentence φ is interderidable with a sentence φ' that has no quantifiers and no names other than 0 that do not occur in φ.

Proof. Replace every quantifier prefix $\forall x$ in φ by $\sim x$. Call the sentence that results from φ by these replacements θ. Obviously $\varphi \vdash \theta$. We show Lemma 7 holds for θ, by induction on the complexity of sentences not involving the universal quantifier.

Basis. For θ atomic, we can take θ as the desired sentence φ. Inductive step. For θ with a connective dominant the result is immediate from the inductive hypothesis.

For $\theta = \exists x \chi$: choose a name a not occurring in θ. Consider χ^*. By IH there is a sentence η which has no quantifiers and no names other than 0 not occurring in χ^*, such that $\chi^* \vdash \eta$. If η does not involve a, take η as the desired sentence φ. If η does involve a, apply Lemma 6 to $\exists x \eta$ to obtain the desired sentence φ.

Lemma 8. Let φ be a sentence of successor arithmetic involving no names other than 0. Then φ is interderidable with a truth-functional compound of equations and inequations involving only numerals.

Proof. Immediate from Lemma 7.

Lemma 9. Let φ be a truth-functional compound of equations and
inequations involving only numerals. Then either \(\vdash \varphi \) or \(\vdash \sim \varphi \).

Proof. Let \(\tau \) assign \(T \) to provable equations involving only numerals and assign \(F \) to disprovable ones. By Lemma 1 \(\tau \) assigns a value to every equation. Moreover every member of the truth set \(\tau_\varphi \) is a theorem of successor arithmetic. By the Truth Set Theorem, if \(\tau(\varphi) = T \) then \(\tau_\varphi \vdash \varphi \), and if \(\tau(\varphi) = F \) then \(\tau_\varphi \vdash \sim \varphi \). Therefore either \(\vdash \varphi \) or \(\vdash \sim \varphi \).

Theorem on Completeness of Successor Arithmetic

Let \(\varphi \) be a sentence of successor arithmetic containing no names other than 0. Then either \(\vdash \varphi \) or \(\vdash \sim \varphi \).

Proof. By Lemma 8 and Lemma 9.

By (iii) the axiomatic theory of successor arithmetic is also decidable. Notice, however, that in all the inductive proofs of results culminating in the last theorem there is implicit a method for finding either a proof or a disproof, from the axioms of successor arithmetic, of any sentence containing \(s() \) and 0 as its only non-logical expressions.

7.9 **Representability in \(Q \): limitative theorems for logic and arithmetic.**

By a more complicated application of the method of quantifier elimination we can establish the decidability and completeness of the axiomatic theory of successor and additive arithmetic. This theory is obtained by adding to the axioms for successor arithmetic the recursion for addition:

\[
\begin{align*}
\forall x \; x \cdot 0 &= x \\
\forall x \forall y \; x \cdot s y &= s(x \cdot y).
\end{align*}
\]

When multiplication is introduced, however, the situation is altered. There is a single sentence, which we shall call \(Q \), formulated in the language of full arithmetic, whose deductive closure is undecidable. \(Q \) is the conjunction of the following sentences:

\[
\begin{align*}
\forall x \; \sim x \cdot x &= 0 \\
\forall x \forall y \; x \cdot s y &= s y \cdot x = y \\
\forall x (x \cdot 0 &\lor \exists y \; x \cdot y = s y) \\
\forall x \forall y \; x \cdot y + 0 &= x \\
\forall x \forall y (\forall z (\sim x \cdot z + sz = y \& \sim y + sz = x) \supset x = y) \\
\forall x \forall y \; x \cdot s x + y &= s(x \cdot y + s y) \\
\forall x \; x \cdot 0 &= x \\
\forall x \forall y \; x \cdot s y &= s(x \cdot y) \\
\forall x \; x \cdot 0 &= 0 \\
\forall x \forall y \; x \cdot s y &= (x \cdot y) + x
\end{align*}
\]

\(Q \) is obviously true in the natural model \(\mathbb{N} \). By ‘\(Q \)’ we shall sometimes mean the deductive closure of the sentence \(Q \). In this sense we shall also refer to the sentences above as the axioms of \(Q \).

By deducibility in (a theory) \(\Delta \) we shall mean deducibility relative to \(\Delta \). In subsequent discussions of deducibility in \(Q \) we shall find it convenient to consider the following rules of inference respectively equivalent to the axioms just given:

\[
\begin{align*}
st &= 0 \\
st &= su \\
t &= u \\
t &= 0 \\
t &= sa \\
\vdots \quad \vdots \\
\vdots \quad \vdots \\
\varphi \\
\varphi \\
\end{align*}
\]

where \(a \) does not occur in \(t, \varphi \) or any assumption other than \(t = sa \) on which the conclusion \(\varphi \) in the right hand subproof depends.

\[
\begin{align*}
t + u &= 0 \\
t &= 0 \\
\forall x (\sim t \cdot sz = u \& \sim u + sz = t) \\
t &= u \\
\end{align*}
\]

Any inter substitutions of:

| \(st + u \) with \(s(t + u) \) |
| \(t + 0 \) with \(t \) |
| \(t + su \) with \(s(t + u) \) |
| \(t \cdot 0 \) with \(0 \) |
| \(t \cdot su \) with \((t \cdot u) + t \) |

\(Q \) is arithmetically rich enough, as we shall show below, to enable us to prove the following theorem.

Representability Theorem

For every recursive function \(f \) there is a formula \(\varphi(x, y) \) of the language of arithmetic such that for all \(\bar{n} \)

\[
\varphi(\bar{x}, a) \equiv a = f(\bar{x}),
\]

with \(a \) not occurring in \(\varphi(x, y) \). (Recall that \(\bar{a} \) is the numeral for the natural number \(a \)).

Example. The formula \(x \cdot y = z \) represents addition in \(Q \), since (as we shall see below) for all \(m, n \) \(m + n = a \equiv a = m + n \). Note here that \(m + n \) is the additive term formed from the numeral for \(m \) and the numeral for \(n \), whereas \(m + n \) is the numeral for the sum of \(m \) and \(n \).
We shall often use a function symbol like + both to denote the corresponding sign of the object language and to represent the usual arithmetical operation in the metalanguage. Context will easily settle which use is intended.

The proof of the Representability Theorem will exploit the inductive kind of definition of recursive function explained above. As in the example just given, it is easy to provide representing formulae for the basic recursive functions listed in such a definition. One then proceeds by induction on the length of 'pedigree' of recursive functions, showing how to obtain a representing formula for a freshly constructed recursive function from the previous representing formulae assumed, by inductive hypothesis, to exist for the functions involved at the last stage of construction. We shall use the following inductive definition of recursive function.

The basic recursive functions will be

\[+ \quad \text{(addition)} \]

\[\cdot \quad \text{(multiplication)} \]

\[c_\omega \quad \text{(if } m = n \text{ then } c_\omega(m, n) = 1, \text{ and if } m \neq n \text{ then } c_\omega(m, n) = 0) \]

\[id^* \quad \text{(for } k \leq m; \text{ where } id^*(n_1, \ldots, n_m) = n_k) \]

The means for constructing new recursive functions from old ones will be

Composition: If \(f \) is \(n \)-place and \(g_1, \ldots, g_s \) are \(m \)-place then \(f(g_1, \ldots, g_s) \) will be \(m \)-place

and

Minimization of regular functions: Suppose \(f \) is an \((n+1) \)-place function such that for all \(m \) there is some \(p \) such that \(f(m, p) = 0 \). Then \(f \) is said to be regular; and the \(n \)-place function \(g \) is obtained by minimizing \(f \) iff for all \(m \) \(g(m) \) is the least number \(p \) such \(f(m, p) = 0 \).

Before giving our proof of the Representability Theorem exploiting this inductive definition of recursive function some preliminary remarks and lemmata are in order. \(Q \) is not claimed to be the weakest theory (in any interesting sense) for which the Representability Theorem holds. Our choice of \(Q \) is determined by ease in proving representability and by the fact that \(Q \) is finitely axiomatized. (The importance of the latter consideration will emerge below.) Indeed, in our proof of representability we shall appeal only to the following facts about deducibility in \(Q \):

So any theory within which (1)–(5) held would do in place of \(Q \) for the proof of representability. Let us, however, proceed to establish (1)–(5) in the case of \(Q \).

Proof of fact (1). By induction on \(n \).

Basis. \(m + 0 = m \), i.e. \(m + 0 \).

Inductive step. \(m + s(n) = s(m + n) \). By IH \(m + n = m + n \). So, substituting, \(m + s(n) = s(m + n) \). That is, \(m + s(n) = m + s(n) \).

Proof of fact (2). By induction on \(n \).

Basis. \(m + 0 = m \), i.e. \(m + 0 \).

Inductive step. By IH and Fact 1 we have a proof

\[\vdash m \cdot s(n) = (m \cdot n) + m, \quad m \cdot n = m \cdot n \quad \text{: Fact 1} \]

\[m \cdot s(n) = (m \cdot n) + m \]

\[m \cdot n + m = m \cdot (n + m) \]

\[i.e. \quad m \cdot s(n) = m \cdot n \]

Proof of fact (3). Use \(m \cdot n \) applications of the rule \(\frac{st = su}{t = u} \)

followed by an application of the rule \(\frac{st = 0}{t = 0} \).

Proof of fact (4). By induction on \(n \).

Basis. For \(n = 1 \) we have the proof

\[a + s0 = 0 \]

\[a + b = 0 \]

\[a = 0 \]

\[a = sc \]

\[sc = 0 \]

\[a = 0 \]

\[a = 0 \]

\[a = 0 \]

\[\vdash_\varnothing \]

\[\vdash_\varnothing \]

\[\vdash_\varnothing \]
Inductive step. By IH we have a proof by reflexivity of identity and \(a + sb = sa \) :
\[a = sc \]
\[sc + sb = sa \]
\[s(c + sb) = sa \]
\[c + sb = n \]
\[c = i \]
\[a = n \]
\[\varphi(a) \]
\[\varphi(a) \]
\[\varphi(a) \]

Proof of fact (5). Obvious from the \(Q \)-rule given above corresponding to the fifth axiom.

We are now in a position to prove the Representability Theorem. It follows from the following lemmata.

Lemma 1. \(x + y = z \) represents addition. This is obvious from fact (1).

Lemma 2. \(x \cdot y = z \) represents multiplication. This is obvious from fact (2).

Lemma 3. \(x_1 = x_1 \land \ldots \land x_n = x_n \land y = x_1 \) represents \(\text{id}^* \). This is obvious by \(\&- I \), \(\&- E \) and reflexivity of identity.

Lemma 4. \((x = y \land z = 1) \lor (x = y \land z = 0) \) represents \(c_w \).

Proof. By cases, according as \(m = n \) or \(m \neq n \).

Suppose \(m = n \). Then we have the proofs
\[\frac{m = n \land a = 1}{a = 1} \]
\[\frac{m = n \land a = 1}{a = 1} \]
\[\frac{m = n \land a = 1}{a = 1} \]
\[\frac{m = n \land a = 1}{a = 1} \]
\[\frac{m = n \land a = 1}{a = 1} \]

and
\[\frac{m = n \land a = 1}{a = 1} \]

Now suppose \(m \neq n \). Then we have the proofs
\[\frac{m = n \land a = 1}{m = n} \]
\[\frac{m = n \land a = 1}{m = n} \]
\[\frac{m = n \land a = 1}{m = n} \]
\[\frac{m = n \land a = 1}{m = n} \]
\[\frac{m = n \land a = 1}{m = n} \]

and
\[\frac{m = n \land a = 1}{m = n} \]

Thus we have shown that our basic recursive functions are representable. We continue with two lemmata on representability of derived recursive functions – functions obtained by composition or minimization.

Lemma 5. Suppose \(f \) is \(m \)-place, represented by \(\psi \), and \(g_1, \ldots, g_n \) are \(k \)-place, respectively represented by \(\phi_1, \ldots, \phi_n \). Then \(f \) is represented by the formula
\[\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)). \]

Proof. Suppressing parentheses wherever possible, we have the proof
\[\frac{\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y))}{\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)} \]
\[\frac{\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y))}{\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)} \]
\[\frac{\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y))}{\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)} \]
\[\frac{\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y))}{\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)} \]
\[\frac{\exists y_1 \ldots \exists y_n (\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y))}{\psi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y)} \]

(since \(\psi \) represents \(f \))

\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]

(since \(\phi \) represents \(f \))

\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]

(since \(\phi \) represents \(f \))

\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
\[\exists y_1 \ldots \exists y_n (\phi(\phi(x,y)) \land \phi(y_1, \ldots, y_n,y)) \land \phi(\phi(x,y)) \lor \phi(y_1, \ldots, y_n,y) \]
and the proof

$$a = \phi_0 \wedge \ldots \wedge \phi_n$$

since ϕ represents g_i:

$$\phi_0 \wedge \phi_1 \wedge \ldots \wedge \phi_n \Rightarrow g_0 \wedge g_1 \wedge \ldots \wedge g_n$$

$$\exists y_1 \ldots \exists y_n \phi_0 \wedge \phi_1 \wedge \ldots \wedge \phi_n \Rightarrow g_0 \wedge g_1 \wedge \ldots \wedge g_n$$

Lemma 6. Suppose f is a regular $(n+1)$-place function represented by $\phi(x, y, z)$; that is for all $\bar{m}, p \phi(\bar{m}, p, a) \Rightarrow a = f(\bar{m}, p)$. Let g be obtained by minimization of f; i.e. for all \bar{m} $(g(\bar{m})$ is the least number p such that $f(\bar{m}, p) = 0$. Then g is represented by the formula

$$\phi(x, y, 0) \wedge \forall z \forall w(x + sw = y \Rightarrow \neg \phi(x, z, 0))$$

i.e. for all \bar{m} $\phi(\bar{m}, a, 0) \wedge \forall z \forall w(x + sw = a \Rightarrow \neg \phi(\bar{m}, z, 0)) \Rightarrow a = g(\bar{m})$.

Proof. Since $f(\bar{m}, g(\bar{m})) = 0$ we have by representability

$$\bar{m} \in \phi(\bar{m}, g(\bar{m}), 0).$$

For all $i < g(\bar{m})$, $f(\bar{m}, i) = 0$; whence again by representability

$$\Rightarrow \neg \phi(\bar{m}, i, 0).$$

Hence by fact (4) about deducibility in Q we have

$$a + sb = g(\bar{m}) \Rightarrow \neg \phi(\bar{m}, a, 0) \quad \ldots \text{(*)}$$

We now have the proof

$$a + sb = g\bar{m}$$

by (*)

$$a + sb = g\bar{m} \Rightarrow \neg \phi(\bar{m}, a, 0) \quad \text{(*)}$$

$$\phi(\bar{m}, g\bar{m}, 0) \wedge \forall z \forall w(x + sw = g\bar{m} \Rightarrow \neg \phi(\bar{m}, z, 0))$$

$$\phi(\bar{m}, g\bar{m}, 0) \wedge \forall z \forall w(x + sw = g\bar{m} \Rightarrow \neg \phi(\bar{m}, z, 0)) \Rightarrow a = g\bar{m}$$

$$\psi(\bar{m}, a) \wedge \forall z \forall w(x + sw = a \Rightarrow \neg \phi(\bar{m}, z, 0))$$

and the proof opposite:

The Representability Theorem is an immediate consequence of Lemmata (1)–(6) concerning representability of basic and derived recursive functions.

Corollary 1. Q is strongly representing.

Proof. Suppose P is a decidable property of natural numbers. By Church's Thesis its characteristic function c_P is recursive. By the Representability Theorem there is a formula $\phi(x, y)$ such that for all \bar{m} $\phi(\bar{m}, a) \Rightarrow a = c_P(\bar{m})$. We show that the predicate $\phi(x, 0)$ strongly represents P:

(i) Suppose $P(n)$. Then $c_P(n) = 0$. Thus $Q \vdash \phi(x, 0)$.

(ii) Suppose not-$P(n)$. Then $c_P(n) = 1$. Thus $Q, \phi(x, 0) \vdash 0 = 1$, whence $Q \vdash \neg \phi(x, 0)$.

Corollary 2. Q has a diagonal.

Proof. Suppose $\#^+$ is a coding of formulae with one free variable and $\#^0$ is a coding of sentences. The mapping

$$n \rightarrow \#^0(\#^+(n)(\bar{m}))$$

is effective. By Church's Thesis it is recursive. Hence by the Representability Theorem there is a formula $\lambda(x, y)$ such that for all \bar{m}

$$\lambda(\bar{m}, a) \equiv \phi(\bar{m}, a) \equiv \#^+(\#^0(n)(\bar{m})).$$

If θ is a formula with one free variable let $\bar{m} = \#\theta$, and if θ is a sentence let $\bar{m} = \#\theta$. Then for all \bar{m} $\lambda(\bar{m}, a) \equiv \#(\#(\#m)(\#\theta))$, that is, $\lambda(\bar{m}, a) \equiv \theta(\bar{m})$.

Corollary 3. Any axiomatizable subtheory of Th(\mathbb{N}) containing Q is self-representing. (Hence, by (vi) and Corollary 2, is incomplete.)

Proof. Suppose Δ is an axiomatisable subtheory of Th(\mathbb{N}) containing Q. Let Δ be given by the effective enumeration $\theta_0, \theta_1, \ldots$ and let $\varphi_0, \varphi_1, \ldots$ be an effective enumeration of all sentences. Consider the decidable relation R of natural numbers defined by
\(\nu_n = \theta_n \)

that is, the \(m \)'th sentence is the \(n \)'th theorem of \(\Delta \). By Church's Thesis the characteristic function \(c_n \) is recursive. By the Representability Theorem there is a formula \(\phi(x,y,z) \) such that for all \(m,n \) \(\phi(m,n,a) \iff a = c_n(m,n) \). Hence \(\nu_n = \theta_n \), iff \(Q \vdash \phi(m,n,0) \). We now show that \(\nu_n \in \Delta \) iff \(3x \psi(m,x,0) \in \Delta \).

(i) Suppose \(\nu_n \in \Delta \). Then for some \(n \) \(\nu_n = \theta_n \), whence \(c_n(m,n) = 0 \).

Thus \(Q \vdash \phi(m,n,0) \). By \(3i \), \(Q \vdash 3x \psi(m,x,0) \) and so \(3x \psi(m,x,0) \in \Delta \).

(ii) Conversely suppose \(3x \psi(m,x,0) \in \Delta \). Since \(\Delta \subset \text{Th}(N) \), \(N \vdash 3x \psi(m,x,0) \). So for some \(n \) \(N \vdash \phi(m,n,0) \). Now if \(c_n(m,n) = 1 \) then \(Q \vdash \sim \phi(m,n,0) \), whence \(N \vdash \sim \phi(m,n,0) \). Thus \(c_n(m,n) = 0 \), i.e. \(\nu_n = \theta_n \). Thus \(\nu_n \in \Delta \).

Since \(m = \theta_n \), we have for all \(\nu, \psi \in \Delta \) iff \(3x \psi(\theta,x,0) \in \Delta \). So \(\Delta \) is self-representing via the predicate \(3x \psi(\theta,x,0) \).

We are assuming that all theories and subtheories mentioned are in the language of arithmetic. From the Corollaries above there now follow certain very important results.

(vii) Any theory consistent with \(Q \) is undecidable.

Proof. Suppose \(\Delta \) is a theory consistent with \(Q \). Since \(Q \) is strongly representing, \(\Delta, Q \) is representing; hence, by (v), is undecidable. Now if \(\Delta \) were decidable, then by testing whether \(Q \supset \psi \) was in \(\Delta \) we could decide whether \(\phi \) was in \(\Delta, Q \). Thus \(\Delta \) is undecidable.

In particular, we have

(vii) The set of logical truths in the language of arithmetic is undecidable,

an improvement on our earlier undecidability result for first order functional logic; and

(xi) Any subtheory of \(\text{Th}(N) \) is undecidable.

Thus from (iii) we have

(x) Any axiomatizable subtheory of \(\text{Th}(N) \) is incomplete

and

(xi) \(\text{Th}(N) \) is unaxiomatizable.

The diagonal for \(Q \) serves as a diagonal for any theory containing \(Q \); in particular, \(\text{Th}(N) \). Since the latter is complete we have by (vi)

(xii) \(\text{Th}(N) \) is not self-representing.

That is, for no predicate \(\psi \) do we have for all \(\phi \) \(\phi(\bar{\theta}) \in \text{Th}(N) \) iff \(\psi \in \text{Th}(N) \).

A fortiori we have

(xiii) \(\text{Th}(N) \) has no 'truth predicate' \(\theta \) such that for all \(\psi \)

\((\psi = \phi(\bar{\theta})) \in \text{Th}(N) \).

The force of the last two results may be brought out as follows, to make them clearly independent of the mapping \(\phi \rightarrow \bar{\theta} \).

Any representing predicate or truth predicate for \(\text{Th}(N) \) is useless unless we can tell which sentence is represented as true by a given predication. The only referring terms available in the language of \(\text{Th}(N) \) are the numerals. Therefore a minimal requirement on any system of reference to sentences is that it consist in an effective mapping \(\phi \rightarrow \bar{\theta} \) of sentences to numerals. Let \(\bar{\theta} \) be a coding of formulae with one free variable and define \(\bar{\theta} \) so that for any such formula \(\theta, \bar{\theta} = \bar{\theta} \). Now define the computable function \(d \) by

\(d(n) = \nu(\bar{\theta}(\bar{n}))(n) \) (where \(\nu(n)(m) = m \)).

By Church's Thesis \(d \) is recursive. Hence by representability there is some \(\delta \) such that for all \(n \) \(\delta(n,a) \vdash \theta \). Hence for all formulae \(\theta \) with one free variable,

\(\delta(\bar{\theta},a) \vdash \theta \); \(\delta(a) \vdash a = d(n) \)

i.e. \(\delta(\bar{\theta},a) \vdash a = \nu(\bar{\theta}(\bar{n}))(\bar{n}) \),

i.e. \(\delta(a) \vdash a = \bar{n} \).

So \(\delta \) is a diagonal for \(Q \) and by the same reasoning as before, \(\text{Th}(N) \) is not self-representing.

From Corollary 3 and (vii) it follows that

(xiv) Any axiomatizable subtheory \(\Delta \) of \(\text{Th}(N) \) containing \(Q \) is incomplete. Moreover \(\Delta \) is incomplete by virtue of an independent sentence \(\psi \) which can be shown to be true in \(N \).

Proof. We need only prove the last claim. The independent sentence \(\psi \) provided by the proof of (vi) is constructed from the diagonal \(\eta \) of Corollary 2 and the representing predicate \(3x \psi(x,z,0) \) of Corollary 3 as follows:

Let \(\psi \eta \) be \(\forall x \exists y \exists z(x,y) \sim 3x \psi(x,z,0) \) and let \(\psi \) be \(\eta \), that is, \(\forall x \exists T(x,x) \sim 3x \psi(x,z,0) \). We show \(\psi \) is true in \(N \):

We know \(\psi \) is not in \(\Delta \). So with \(\Delta \) given by the effective enumeration \(\theta_0, \theta_1, \ldots \) we have for all \(\eta \) \(\psi \) is not \(\theta_n \). Suppose \(\psi \) appears as
\(\omega_i\) in our list of all sentences. Then for all \(n \neq \omega\), whence not \(R(k,n)\), whence \(c_\omega(k,n) = 1\). Hence by representation of \(c_\omega\) by \(\psi\) for all \(n \sim \psi(k,n,0) \in \Lambda\). Since \(\Lambda \subseteq \text{Th}(N)\) we have for all \(n \psi(f,n,0)\) is false in \(N\).

Now we know \(N\) contains only the numbers 0, 1, 2, ..., thus \(\sim 3\psi(p, z, 0)\) is true in \(N\). Since \(\psi\) is the only numeral for which \(\lambda(p, \psi)\) is true in \(N\), we have \(\forall x (\lambda(x, z, 0) \supset \sim 3\psi(x, z, 0))\) is true in \(N\).

This argument, known as the 'semantical argument' for the truth of the independent sentence \(\psi\); turns essentially on concluding that \(\forall x (\lambda(x, z, 0))\) is true in \(N\) from the premise that for every \(n, \psi(n)\) is true in \(N\) or from the infinitely many premisses \(\psi(0)\) is true in \(N\), \(\psi(1)\) is true in \(N\), \(\psi(2)\) is true in \(N\), ...

The reasoning here is carried out in the metalanguage, not in the formal system of proof in the object language. It suggests that we might regain completeness for \(\Delta\) by incorporating into such a system an infinitary rule of inference:

\[
\psi(0) \quad \psi(1) \quad \psi(2) \quad ... \\
\forall x \psi(x)
\]

This is known as the \(\omega\)-rule. It is an attempt to capture, within the formal system, our semantical conception of \(N\) as consisting only of the natural numbers 0, 1, 2, The \(\omega\)-rule, however, allows the formation of infinitely large 'proofs' (which we shall call \(\omega\)-proofs), which are interesting mathematical objects but which do not satisfy the requirement of effective checkability that we placed on proofs when first analyzing them. The notion of \(\omega\)-proof is captured precisely by adding to our earlier inductive definition of the inductive clause corresponding to the \(\omega\)-rule. Thus an \(\omega\)-proof may be infinitely 'wide' as a result of applications of the \(\omega\)-rule, but it will be only finitely 'deep', since it will contain only finitely many applications of rules of inference.

Let \(\Delta^\omega\) be the theory in the language of arithmetic arising from \(\Delta\) by means of \(\omega\)-proofs.

(xv) \(Q^\omega = \text{Th}(N)\)

Proof. \(Q\) and \(\text{Th}(N)\) contain exactly the same atomic sentences. The result then follows by induction on the complexity of sentences, appealing to the \(\omega\)-rule when considering quantified sentences.

Thus \(Q^\omega\) is unaxiomatizable, which is not surprising given the infinitary nature of the \(\omega\)-rule. It is interesting to note that finite proofs using the axioms for successor, addition and multiplication and the principle of induction cannot, by \((x)\), generate as conclusions all truths about \(N\). Yet if we replace the principle of induction by its infinitary version, the \(\omega\)-rule, the infinite 'proofs' then constructible do generate as conclusions all truths about \(N\).

Another way to regain completeness is to consider \(Q^2\), obtained from \(Q\) by replacing \(\forall x \sim x = 0 \Rightarrow \exists y x = \psi(y)\) by the second order induction axiom \(\forall x (\psi(0) \land \forall x (\psi(x) \Rightarrow \psi(x + 1))) \Rightarrow \forall x \psi(x)\). \(Q^2\) is categorical – all its models are isomorphic to \(N\). This is because the second order induction axiom ensures that the natural number sequence guaranteed by the successor axioms exhausts the domain, while the axioms for successor, addition and multiplication uniquely determine those operations on this sequence. Those first order sentences that are second order logical consequences of \(Q^2\) therefore comprise exactly \(\text{Th}(N)\), which is unaxiomatizable. Since there is an effective method for telling whether a sentence is a first order sentence, the second order logical consequences of \(Q^2\) must form an unaxiomatizable set. Moreover any effective enumeration of all second order logical truths would, by checking for enumerated sentences of the form \(Q^2 \Rightarrow \psi\), yield an effective enumeration of all second order logical consequences of \(Q^2\), which as we have seen is impossible. Thus we may conclude

(xvi) Second order logical truth is unaxiomatizable.

7.10 Universally free logic for descriptions and set theory

The system of first order logic developed above dealt with names and functional terms, on the semantical assumptions that every name denotes and every function is everywhere defined in the domain – and, therefore, that every term denotes. Another semantical assumption was that the domain was non-empty.

Let us now consider another two kinds of expressions, which one's grammatical intuitions at first incline one to categorize as terms: *descriptive terms* and *class terms*.

First, in a sentence of the form 'The \(\psi\) is \(\phi\)', one is inclined to regard the descriptive term 'The \(\psi\)' as completing the predicate ' is \(\phi\'. The descriptive term is itself complex, apparently built up from the term-forming operator 'The ' and the predicate ' is \(\phi\'. Thus categorically we appear to have

\[
\phi(\text{The}(\psi)) \quad (x)(x)(\text{The}(x))
\]

which in logical notation would be

\[
\phi(\text{The}(x))
\]

where the inverted iota, binding the variable \(x\), represents 'The'.

Secondly, in a sentence of the form 'The set of \(\psi\)'s is \(\phi\) one is
inclined to regard the class term 'The set of φ's' as completing the predicate ' - φ'. By similar considerations as above we would advance to a logical translation such as

\[\phi(\langle x \rangle) \]

with \(\langle x \rangle \) representing 'The set of φ's'.

\(t \) and \(t() \) are called variable binding term forming operators. They form terms from formulae by binding hitherto free variables in an obvious fashion. Their presence in the formal language is incompatible with the semantical assumptions mentioned above.

For, firstly, we may form the descriptive term \(\exists x(\phi x \& \neg \phi x) \), which obviously denotes nothing. Secondly, the class operator is to be used along with a membership predicate \(e \), whose relationship thereto is strictly governed by the conversion schema:

An object is a member of the set of all φ's iff

it has property ψ.

Formally this is expressed by the axiom schema \(\forall x(\phi x \equiv \psi x) \). Given this schema, Russell's famous paradox ensues. We take \(\sim x \in x \) as an instance of \(\phi x \):

\[\forall x(\phi x \equiv \psi x) \equiv \sim x \in x. \]

Instantiating with the supposedly denoting class term \(\langle y \rangle \equiv \sim y \not\in y \) we obtain

\(\langle y \rangle \equiv \sim y \not\in y \equiv \sim \langle y \rangle \not\in y \equiv \langle y \rangle \not\in \langle y \rangle \)

which is inconsistent, by virtue of the proof

\[\begin{array}{c}
(1) \\
\hspace{1em} \phi \equiv \psi \\
\hspace{2em} \sim \phi \\
(2) \\
\hspace{1em} \phi \equiv \psi \\
\hspace{2em} \sim \phi \\
\hspace{3em} \sim \phi \\
(3) \\
\hspace{1em} \phi \equiv \psi \\
\hspace{2em} \sim \phi \\
\hspace{3em} \sim \phi \\
\end{array} \]

Thus if we wish to include descriptive and class terms in our formal language we must abandon the semantical assumption that every term denotes. This conclusion is compelling in the case of descriptive terms. In the case of class terms it is compelling insofar as we are not prepared to place any restrictions (whether ad hoc or with philosophical motivation) on the predicates to which the class-forming operator may sensibly be applied or on the terms that may sensibly flank the membership sign.

Perhaps the most widely adopted solutions to the problem of non-denoting terms involve the method of so-called contextual elimination (or definition) of occurrences of the 'terms' in question. One may decide, for example, that 'descriptive terms' are not genuine terms, and should not be represented as such in logical notation. This is the main tenet of Russell's theory of descriptions. According to this theory the truth conditions of

The \(\psi \) is \(\phi \)

are just those of the sentence

There is exactly one \(\psi \) and it is \(\phi \),

which has the logical translation

\[\exists x(\forall y(y = x \equiv \psi y) \& \phi x). \]

The latter is then proposed as the proper logical translation of the original sentence 'The \(\psi \) is \(\phi \). The 'descriptive term' is thus analyzed away, and is seen to have meaning only within the context of the whole sentence in which it occurs. There is consequently no need for a descriptive operator in the formal language. It is to be introduced, if at all, only by way of convenient abbreviation. \(\phi(\langle x \rangle) \) will be an abbreviation of the sentence \(\exists x(\forall y(y = x \equiv \psi y) \& \phi x) \), and will not be a sentence of the formal language proper. These abbreviations are sometimes more troublesome than the original sentences, since in complicated cases 'scope markers' for the descriptive terms have to be supplied in order to avoid ambiguous abbreviation. For example, without some further notational device we cannot tell whether \(\sim \phi(\langle x \rangle) \) is an abbreviation of \(\exists x(\forall y(y = x \equiv \psi y) \& \sim \phi x) \) or of \(\exists x(\forall y(y = x \equiv \psi y) \& \phi x) \).

Quine has applied Russell's theory even to names. Names are construed as naming-predicates; a sentence \(\phi(a) \) is interpreted as \(\phi(\text{the } a-) \), and Russell's theory is invoked to deal with the descriptive term. But this would appear to forfeit the original Fregean justification for our categorization of predicates and quantifiers. By withdrawing the name \(a \) from the sentence \(\phi(a) \) we obtain the predicate \(\phi - \). According to Quine's method, however, the residue would be \(\exists x(\forall y(y = x \equiv a) \& \phi x) \), depriving us of a clear grasp of the simplest cases upon which to base the Fregean hierarchy of syntactic categories.

The strategy of contextual elimination is available also for class terms. One modern treatment of class terms in Zermelo-Fraenkel set theory is the following:
\[x \in \{ y \mid \phi y \} \text{ becomes } \phi x \text{ (tantamount to the conversion schema)} \]
\[[z] \phi z \in x \text{ becomes } 3x(\forall z (z \in y \equiv \phi z) \land y \in x) \]
\[[z] \phi z \in [x] \phi x \text{ becomes } 3x(\forall z (z \in y \equiv \phi z) \land y \in [x] \phi x) \]

The interesting feature of this contextual definition of class terms is that it is far more contextual than that of descriptive terms. In atomic predications all occurrences of descriptive terms carry denotational commitment, whereas on the present treatment of class terms only those occurrences of class terms to the left of the membership sign carry such commitment. For example, \((y \phi x) \in \{ y \mid \psi y \}\) becomes \(\exists x (y \phi x) \land \exists y (y \equiv \psi y) \land x \in y\), whereas \([z] \phi z \in [y] \phi [y]w\) becomes \(\exists x (\forall z (z \in x \equiv \phi z) \land \psi x)\). This raises problems about the term-like status of class terms even when the class operator is taken as primitive, and not contextually defined. We are obliged to consider the question whether an expression is a term only if it must denote in order that an atomic predication involving it be true. If the answer is affirmative then the method above for eliminating class terms must be modified. We might instead adopt a ‘tandem’ method, construing \([x] \phi x\) as \(\exists x (\forall z (z \in x \equiv \phi z))\), and then treating the latter according to Russell’s method. Alternatively we might take the class operator as primitive in the formal language, and lay down such rules of inference as secure its equivalence with the descriptive complex \(\exists x (\forall z (z \in x \equiv \phi z))\).

Whichever of the methods mentioned above for dealing with class terms is adopted, the argument for Russell’s paradox now serves simply to show that there is no such thing as the set of all non-self-membered things. The statement \(\exists x \forall y (y \in x \equiv \sim y \in y)\) leads to absurdity in just the same way as does the statement that some man shaves all and only those men who do not shave themselves.

It is beyond the scope of this chapter to review the many treatments of names, descriptive terms and class terms besides those already mentioned. The literature is well supplied with competing theories variously involving presupposition, truth-value gaps, third truth values, and arbitrary or outlandish denotations for otherwise non-denoting terms. There are also set theories that distinguish between sets and proper classes. Some theories are favoured for their formal elegance, paucity of primitives or sparseness of ontology; others because they allegedly do fuller justice to our intuitions about logical or grammatical form, or to ordinary usage.

The major difficulty, from our point of view, is to combine (i) an analysis of the logical form of predications according to which terms are genuine expressions of the language, with (ii) the semantical assumption that a term’s failure to denote renders any atomic predication involving it false. Russell, at philosophical pains to show that ‘the ϕ’ was not a term in a genuine logical sense, abbreviated his analysis in a way which retained surface pretences in the face of this logical conviction. For there is no doubt that we manipulate descriptive terms as terms rather than as quantifying phrases in mathematical and everyday reasoning. We shall provide an account on which logical invention respects grammatical convention. We shall be in agreement with Russell about the truth conditions of sentences involving descriptive terms, but the latter will be treated as genuine expressions of the formal language, and not introduced only by way of abbreviation.

We must therefore develop a logic free of the semantical assumption that every term denotes. Such logics are called free logics. If in addition we drop the assumption that the domain is non-empty, we shall have a universally free logic. Universal freedom calls for certain constraints on the quantifier rules, as will emerge below.

In the new model-theoretic semantics a model \(M\) for a set of extra-logical expressions need not have a non-empty domain. Even when the domain is non-empty, not every name need denote. Moreover functions need not be everywhere defined. An assignment of individuals to variables will satisfy an atomic formula if and only if all its terms denote (relative to that assignment) and the relation in question holds between those denotations. In particular, if any of the terms fails to denote (relative to that assignment) then the assignment will not satisfy the atomic formula. A functional term \(f(t_1, \ldots, t_n)\) may fail to denote in \(M\) either because one of \(t_1, \ldots, t_n\) fails to denote or because the mapping \(M(f)\) is not defined for their denotations as arguments.

If \(ϕ\) is a formula with \(x\) free, then \(\forall x ϕ\) will be a descriptive term in which \(x\) is bound by the initial occurrence of \(\forall x\). If there is exactly one individual \(α\) such that \(s(x/α)\) satisfies \(ϕ\) when \(tx\) denotes that individual relative to \(s\); otherwise it denotes nothing. Obviously if the descriptive term is closed (i.e. has no free variables) then it denotes the same individual (if it denotes at all) relative to every assignment.

We abbreviate \(\exists x (x \equiv t)\) (‘\(t\) exists’) as \(∃t\).

The modified quantifier rules are as follows:

\[
3-1: \quad 3\exists \, \exists x \quad \frac{\exists t \quad \phi t}{\exists x \phi x}
\]
\[E: \quad \frac{\exists E \quad \phi \quad \exists \alpha}{\exists \alpha} \]

where \(\alpha \) does not occur in \(\exists \alpha, \phi \) or any assumption other than \(\phi \) and \(\exists \alpha \) on which the upper occurrence of \(\phi \) depends

\[E: \quad \frac{\exists \alpha}{\exists \alpha} \]

\[E: \quad \frac{\forall x \phi}{\exists \alpha \exists \alpha} \]

where \(\alpha \) does not occur in any assumption other than \(\exists \alpha \) on which \(\phi \) depends

\[E: \quad \frac{\exists \alpha}{\exists \alpha} \]

Reduction procedures are obvious for \(\exists \) and \(\forall \) governed by these rules. Reflexivity of identity is now expressed by the rule

\[\frac{\exists t}{t = t} \]

Substitutivity of identicals and the rules for absurdity and the connectives are as before.

We add a denotation rule for atomic sentences \(\phi \) (including identities) which involve a term \(t \) not within the scope of any occurrence of \(t \):

\[\frac{\phi}{\exists t} \]

Finally we come to the question of introduction and elimination rules for the descriptive operator. It is different from other logical operators insofar as it has dominant occurrences in terms rather than in sentences. The easiest way to display a dominant occurrence of the descriptive operator is by way of an identity involving a descriptive term. Thus our introduction rule for \(t \) will tell us the conditions under which we may infer a conclusion of the form \(t = \exists x \phi \), and the elimination rules will tell us what we may infer from a premise of that form (along with certain other premises):

\[\frac{t = \exists x \phi}{\phi'} \]

Proof:

\[\frac{t = \exists x \phi \quad \exists t}{\exists t} \]

\[\frac{t = \exists x \phi \quad t = t}{t = \exists x \phi} \quad (1-E) \]

\[\frac{\exists x (x = t \equiv \phi)}{t = \exists x \phi} \]

Proof:

\[\frac{a = t \quad \exists \alpha \quad \forall x (x = t \equiv \phi)}{a = t} \quad \frac{a = t \quad a = t \equiv \phi'}{\phi'} \quad \frac{a = t \equiv \phi'}{a = t} \quad \frac{a = t \equiv \phi'}{\exists t} \quad \frac{a = t}{t = \exists x \phi} \quad (1-I) \]
(c) \(\exists x \psi \vdash \exists ! x \psi \)

Proof:
1) \(\exists ! x \psi \)
2) \(\forall x (x = a \equiv \psi) \)
3) \(a = 1 x \psi \)
4) \(\exists ! x \psi \)
5) \(\exists ! x \psi \)

(d) \(\exists ! x \psi \vdash \exists x \psi \)

Proof:
1) \(\exists ! x \psi \)
2) \(\exists ! \psi \)
3) \(\vdash \exists ! \psi \)
4) \(\exists ! \psi \)
5) \(\exists ! x \psi \)
6) \(\exists x \psi \)

The inferences (A), (C) and (D) suffice for the completeness proof and could therefore be taken as primitive, if so desired, instead of the introduction and elimination rules for \(\forall \) given above.

The completeness proof proceeds as usual, with certain modifications. The Henkin expansion of a consistent set \(\Delta \) is as follows, with the notational conventions of the argument in section 6.4.

\[\Delta_0 = \Delta \]
\[E_0 = \Delta_0, \forall x a, \exists ! a \]
\[A_0 = E_0, \forall x (\sim \exists ! x) \]
\[I_0 = A_0, \exists ! x \psi \]
\[\Delta_{n+1} \]
\[\Delta = \bigcup \Delta_n \]

To show \(\Delta \) is consistent it suffices, for familiar reasons, to show that if \(\Delta_{n+1} \vdash \star \) then \(\Delta_n \vdash \star \). The only step missing from our earlier demonstration in section 6.4 is the following: if \(I_n \vdash \star \) then \(A_n \vdash \star \). So suppose \(I_n \vdash \star \). Suppose \(A_n, \exists ! x \psi \vdash \star \). Since \(\exists ! x \psi \vdash \exists ! x \psi \), we have \(A_n, \exists ! x \psi \vdash \star \). But \(I_n \vdash \star \). Thus \(A_n, \exists ! x \psi \vdash \star \). Hence \(I_n = A_n \) and \(A_n \vdash \star \).

Therefore as in our earlier completeness proof \(\Delta \) is consistent, maximal, deductively closed and replete with 'witnesses'.

The natural model for \(\bar{\Delta} \) is defined as follows.

(i) Its domain is the set of all equivalence classes of terms \(t \) such that \(\exists ! t \in \bar{\Delta} \), under the equivalence relation \((t = u) \in \bar{\Delta} \).

(ii) Each name \(\alpha \) names its own equivalence class.

(iii) \(M(f) \) maps \(\langle \alpha_1, \ldots, \alpha_n \rangle \) to \(f(\alpha_1, \ldots, \alpha_n) \) if \(\exists ! f(\alpha_1, \ldots, \alpha_n) \in \bar{\Delta} \); otherwise \(M(f) \) is not defined for those arguments.

(iv) \(\langle \alpha_1, \ldots, \alpha_n \rangle \in M(P) \) if and only if \(P(\alpha_1, \ldots, \alpha_n) \in \bar{\Delta} \).

That this is a sound definition is seen easily as before.

Simplification Lemma. For every term \(t \) such that \(\exists ! t \in \bar{\Delta} \) there is a term \(t \) not involving \(t \) such that \(\exists ! t \in \bar{\Delta} \) and \(|t| = |\alpha| \).

Proof. Suppose \(\exists ! x \psi \in \bar{\Delta} \). By construction for some name \(a \in \bar{\Delta} \) and \(\psi = \psi \in \bar{\Delta} \). Hence \(\exists ! x \psi = \exists x \psi \). The lemma now follows by induction on the number of occurrences of \(x \) in \(t \).

Now define the depth of terms and formulae as follows:

\[d(x) = d(a) = 0 \]
\[d(f(\alpha_1, \ldots, \alpha_n)) = d(P(\alpha_1, \ldots, \alpha_n)) = \max \{ d(\alpha_i) \mid 1 \leq i \leq n \} + 1 \]
\[d(\sim \psi) = d(\forall x \psi) = d(\exists x \psi) = 1 + d(\psi) \]
\[d(\psi \land \psi) = d(\forall x \psi) = 1 + d(\psi) \]
\[d(\exists x \psi) = 1 \]

We now show by a simultaneous induction on the depth of the terms and formulae mentioned that

(i) If \(\exists ! t \in \bar{\Delta} \) then \(t \) denotes \([t] \) in \(M \).

(ii) \(\alpha \in \bar{\Delta} \) if and only if \(\alpha \) is true in \(M \).

Note that for the purposes of our induction the sentence \(\exists ! x \psi \) is less complex than the sentence \(\exists ! x \psi \).

The basis for (i) and (ii) is obvious.

Inductive step for (i)

Case (i): \(t \) is \(f(\alpha_1, \ldots, \alpha_n) \).

Suppose \(\exists ! f(\alpha_1, \ldots, \alpha_n) \in \bar{\Delta} \). By virtue of the proofs

\[\exists x x = f(\alpha_1, \ldots, \alpha_n) \]

\[\exists ! t \]

for \(1 \leq i \leq n \), and closure of \(\bar{\Delta} \), we have \(\exists ! t \in \bar{\Delta} \). By IH(i) \(t \) denotes \(\langle \alpha_1 \rangle \) in \(M \). So \(f(\alpha_1, \ldots, \alpha_n) \) denotes \(M(f)(\langle \alpha_1 \rangle, \ldots, \langle \alpha_n \rangle) \), which is precisely \(\langle f(\alpha_1, \ldots, \alpha_n) \rangle \).

Case (ii): \(t \) is \(\exists ! x \psi \).

Suppose \(\exists ! x \psi \in \bar{\Delta} \). By construction for some name \(a \in \bar{\Delta} \), whence \(|a| = |\exists x \psi| \). Since \(a = \exists ! x \psi \vdash \psi \in \bar{\Delta} \), we have \(\bar{\psi} \in \bar{\Delta} \).
By $1H(11)$, ψ is true in M. Since a denotes $|a|$ in M, $M \vdash \phi[|a|]$. Moreover since $\exists !x \psi \vdash \exists !x \psi$ and $\bar{\lambda}$ is closed, we have $\exists !x \varphi \in \bar{\lambda}$. By $1H(11)$ again, $\exists !x \psi$ is true in M. So $|a|$ is the unique unifier of ψ in M, and is therefore the denotation of $\exists !x \psi$ in M; that is, $|\exists !x \psi|$ is the denotation of $\exists !x \psi$ in M.

Inductive step for (11)

When ψ has a connective dominant the reasoning is as before. We shall simply consider the case where ψ is $\exists !x \varphi$. Suppose $\exists !x \varphi \in \bar{\lambda}$. By construction for some name a $\exists !a \varphi \in \bar{\lambda}$ and $\bar{\psi} \varphi \in \bar{\lambda}$. By $1H(11)$, $\bar{\psi} \varphi$ is true in M. Since a denotes $|a|$ in M, $\exists !x \varphi$ is true in M. Conversely suppose $\exists !x \varphi$ is true in M. Then for some $|a|$ in M, $M \vdash \phi[|a|]$. By substitution, for some $|u|$ in M, where u does not involve $\bar{\lambda}$, $M \vdash \phi[|u|]$. Since a denotes $|a|$ in M (by $1H(11)$), φu is true in M. By choice of u, φu is less complex than $\exists !x \varphi$, so by $1H(11)$ we have $\varphi u \in \bar{\lambda}$. Moreover $\exists !u \in \bar{\lambda}$. By $\exists !u$ and closure of $\bar{\lambda}$, $\exists !x \varphi \in \bar{\lambda}$.

All the metatheorems of Chapter 6 now extend to our system of universally free logic for functional and descriptive terms.

We can incorporate class terms by means of the following introduction and elimination rules for $\{\}$, similar to those for $\exists !$:

\[
\frac{\alpha \in \ell^{(\ell)}}{\alpha} \quad \frac{\alpha, \bar{\lambda}}{\exists \bar{\lambda}}
\]

\[
\frac{\varphi' \exists !t \alpha \in \ell^{(\ell)}}{t = \langle x | \varphi \rangle}
\]

where α does not occur in $t = \langle x | \varphi \rangle$ nor in any undischarged assumptions of the subordinate proofs other than those of the form displayed

\[
\frac{\varphi' \exists !u \in \ell^{(\ell)}}{u \in \ell^{(\ell)}}
\]

Reduction procedures are obvious. By means of these rules we can construct proofs similar to the ones above, for the following deducibility statements.

(A), $t = \langle x | \varphi \rangle \vdash \forall x (x \in t \Rightarrow \psi)$

(B), $\forall x (x \in t \Rightarrow \varphi), \exists !t \vdash t = \langle x | \varphi \rangle$

(C), $\exists x \forall y (y \in x \Rightarrow \varphi'), \exists !x | \varphi \vdash \exists !x | \varphi'$

(D), $\exists !x | \varphi \vdash \exists x \forall y (y \in x \Rightarrow \varphi')$

The Henkin expansion is as before, except that somewhere during the n^{th} stage we add $\exists ! | x | \varphi$ if we could add $\exists x \forall y (y \in x \Rightarrow \varphi)$ consistently. By (c), this addition would preserve consistency.

The natural model is defined as before, and the simplification lemma holds. The depth of $|x| \varphi$ is defined as $7 + d(\varphi)$, so that the sentence $\exists x \forall y (y \in x \Rightarrow \varphi')$ is less complex for inductive purposes than the sentence $\exists ! | x | \varphi$. (i) and (ii) are proved as before by a joint induction. Case (ii) in the inductive step for (i) is easily re-worked with $|x| \varphi$ in place of $|x| \psi$; for, in any model M of our formal language with the membership predicate \in, the denotation of $|x| \varphi$ relative to an assignment s is the unique α (should there be one) in M such that for all β in $M(\beta, \alpha)$ is in the extension $M(e)\iff M \vdash \varphi(s(x|\beta))$. In other respects the completeness proof is unchanged.

Universally free logic for identity, functions, descriptions, class abstractions and membership is an adequate logical foundation for classical mathematics. The introduction and elimination rules for $\{\}$ specify the logical interrelationship between class abstraction and membership. The introduction rule quickly yields the so-called principle of extensionality for sets:

\[
\forall x (x \in t \Rightarrow x \in u) \quad \exists !t \quad \exists !u
\]

\[
\frac{t = u}{t = u}
\]

while the two elimination rules are tantamount to the conversion schema. The rules are truth preserving in models containing at most one individual with no members (as can readily be seen from extensionality).

The step from logic to mathematics is taken when we assert the existence of certain sets, either outright or conditionally upon the existence of others. Other axioms of set theory may lay down global constraints on the membership relation. The axioms of any set theory will be motivated by a particular conception of the universe of sets that the axioms are intended adequately to convey.

The set theory most widely adopted at present is that of Zermelo and Fraenkel. The motivating conception is of a cumulative hierarchy of 'pure' sets, starting with the empty set and generating more sets of 'higher rank' in an iterative fashion. Its axioms are as follows:

Existence of the empty set

$\exists ! | x | \varphi (\sim x = x)$

Axiom of Unions

$\forall x \exists ! | y | \exists ! (y \in z \Rightarrow z \in x)$

(The set consisting of all members of any given set's members exists.)

Axiom of Powers

$\forall x \exists ! | y | \forall z (z \in y \Rightarrow z \in x)$

(The set of all subsets of any given set exists.)
Axiom Schema of Replacement
\[
\forall x (\forall y \forall z \forall w (\phi y z \land \phi y w \Rightarrow z = w) \Rightarrow \exists ! y (\exists z (z \in x \land \phi y z)))
\]
(The image of any set projected by a many-one relation is a set.)

Axiom of Foundation
\[
\forall x (\exists y (y \in x \land \exists z (z \in x \land \sim \exists y (y \in z \land y \in x))))
\]
(Any non-empty set has a member with no members in common with it. Thus there are no self-membered sets or membership 'loops'.)

These axioms are all satisfiable in a model in which each set has only finitely many members. In order to secure the existence of infinite sets some such set must be said to exist. The set chosen for this purpose is the set of all finite ordinals, defined as follows.

First, an ordinal is a set closed under and connected by the membership relation:
\[
0_\omega = \forall \forall (x \in y \Rightarrow \forall z ((z \in y \Rightarrow z \in x) \land (z \in x \Rightarrow (z = y \lor z \in y \lor z \in x)))
\]
\[
s(x), \text{ the successor of } x, \text{ is defined as } \forall (y = x \lor y \in x), \text{ and } \emptyset \text{ is defined as } (x = x). \text{ Finally, we define } \omega \text{ as the set of all ordinals that, along with each of their members, are either } 0 \text{ or the successor of some ordinal:}
\]
\[
\omega_\omega = \forall (\forall (0 \in x \land \forall (y = x \lor y \in x) \Rightarrow (y = \emptyset \lor \exists (x \in y \land y = s(z))))
\]

The Axiom of Infinity is \(\exists ! \omega \).

Within any model of our axioms the denotation of \(\omega \) must have infinitely many members. A set is defined to be countable just in case there is a 1-1 correspondence (in a suitably defined set-theoretic sense) between its members and all those of \(\omega \) or some member of \(\omega \). Provably there is no such correspondence between the members of any set and all its subsets. Thus the set of all subsets of \(\omega \) is uncountable.

We are now faced with Skolem's paradox: if set theory is consistent then by the Countable Models Theorem it has a countable model, within which the set of all subsets of \(\omega \) will have only countably many members. Absolute uncountability would appear to elude formal characterization at first order. Note that the 'uncountability' of the power set of \(\omega \) is due to the absence from the countable model, as indeed from any model, of a member which, within that model, constitutes a 1-1 correspondence between members of (the denotation of) \(\omega \) and all members of (the denotation of) \(\forall x \exists y (y \in x \land y \neq x) \). Nevertheless, from outside the countable model, we deem such a set to exist. Such is the gulf between fugitive and captive ontology.

Within set theory one can develop a theory of recursive definition that allows one to assert the existence (as sets of an appropriate kind) of operations defined on ordinals by certain recursion schemes. Thus, using the scheme
\[
\alpha + 0 = \alpha
\]
\[
\alpha + s(\beta) = s(\alpha + \beta)
\]
\[
\alpha \cdot 0 = \emptyset
\]
\[
\alpha \cdot s(\beta) = (\alpha \cdot \beta) + \alpha
\]
we may assert the existence of addition and multiplication as operations on finite ordinals, and introduce + and \cdot as defined function signs. With \(\emptyset \) in place of 0, \(s \) defined as above, + and \cdot introduced by recursive definition and all quantifications relativized to the set of finite ordinals, the axioms of the 'arithmetical' theory \(Q \) translate into theorems of set theory. Thus \(\exists \omega \) becomes the set-theoretical theorem \(\emptyset \in \omega \), \(\forall x \in \omega \cdot x + 0 = x \) becomes the theorem \(\forall x (x \in \omega
\Rightarrow x + 0 = x) \), and so on. Set theory thereby inherits the undecidability and incompleteness of \(Q \).

Zermelo-Fraenkel set theory is incomplete in other respects. The Axiom of Choice (any set \(X \) of non-empty mutually disjoint sets has in common with some set exactly one member from each of its (i.e. \(X \)'s) members) is independent of Zermelo-Fraenkel set theory. So is the Continuum Hypothesis, which states that the infinity of subsets of \(\omega \) is the least uncountable infinity. The foundations of classical mathematics, if not shaky, are generously supplied with expansion cracks. A complete picture of what Mostowski has called the 'crashing incompleteness' of set theory calls for a detailed development of the theory itself, which is beyond the scope of this book.
NOTES

Chapter 1

The definition of logical consequence, the single most important concept in logic, is due to Bolzano and Tarski. See Tarski's paper 'On the concept of logical consequence' in Tarski 1956.

The atomistic ontology of logical semantics has excellent philosophical credentials. Definitive modern discussions are Quine 1960, Strawson 1959 and Wittgenstein 1961. See also Quine 1960 for a discussion on the ontological commitments of theories.

Frege's seminal contribution to the study of first order languages is Begriffschrift (1879). Other relevant papers of his are translated in Geach and Black 1960. See also Dummett's highly influential book on Frege's philosophy of language (1973).

Gentzen's work in proof theory is collected in ed. Szabo 1969.

For introductions to the various philosophical logics, see Hughes and Cresswell 1968, Hintikka 1962 and McArthur 1976.

Chapter 2
T. Potts invented the categorial notation used here. Several attempts to provide formal semantics for natural language have been based on a categorial approach. See Lewis 1972 and Montague 1974.

The use of 'linkages' in explaining quantification is to be found in Jeffrey 1967.

Chapter 3
An introduction to the problem of universals, with a useful reading list, is Staniland 1973. On non-denoting terms the reader can do no better than consult the foet classic: Frege's 'On sense and reference' in ed. Geach and Black 1960; Russell's 'On denoting' (1905) and Strawson's 'On referring' (1950).

Whether the truth functional connective ⇒ is an adequate logical translation of the English 'if ... then ...' is discussed by numerous authors in the journal Analysis. The problem of entailment is to provide an account and logical systematization of that elusive relation between premises and conclusion of 'genuinely' valid arguments. See Anderson and Belnap 1975, Bennett 1969, Geach 1958, Smiley 1959 and von Wright 1957.

Tarski's paper 'The concept of truth in formalized languages' in Logic, Semantics, Metamathematics (1956) is the source of our semantical treatment. An interesting discussion of the possibility of any other kind of approach is Wallace 1970. Davidson's oeuvre on a theory of truth as a theory of meaning for natural language has given rise to a current paradigm, consolidated and assessed in Evans and MacDowell 1976.

For further reading in mathematical model theory see Bell and Slomson 1971, and Chang and Keisler 1973.

Chapter 4
The system of proof developed in this chapter is adapted from Prawitz 1965. We use dilemma as our preferred classical rule of negation.

Heyting's original formalization of intuitionistic logic (3rd ed. 1971) has been superseded by the more natural one due to Gentzen 1969. More recently Martin-Löf 1975 has developed an intuitionistic type of system in which logical and mathematical operations are treated in a single system.

Sheffer's stroke has long been regarded as a mere quirk, probably because of Nicod's system based on the axiom (A(B(C))(D(D(D)))). The quantifier stroke is due to Schönfinkel 1924. Our introduction and elimination rules are intended to make the stroke more of a quark.

The connective × of section 12 is 'tonk'. Prior's runabout inference ticket (1967). Our discussion owes a great deal to Prawitz. See also Belnap.

Contexts which do not permit substitutions as required by the principle of extensionality are called intensional; and, in the case of contexts for singular terms, referentially opaque. Paradigmatic cases are contexts within the scope of a modal operator such as 'it is necessarily the case that ...' or a verb of propositional attitude such as 'He believes that ...'. A useful collection of papers on the problems of opacity and intensionality is Linsky 1971.

Chapter 5
Our proof of compactness is from Bell and Slomson 1971, where it is attributed to Rado.

The proof of completeness via truth sets is due to Kalmár 1934–5. The normalization theorem, for a system with classical reductio in place of dilemma and without disjunction, is due to Prawitz 1965. The dual proof of completeness via conjunctive normal forms is due to Post 1921. The maximalization method is due to Henkin 1949.

The double negation theorem was first proved by Glivenko 1929. The 'possible worlds' semantics for intuitionistic logic is due to Kripke 1965. Our proof of maximalization is adapted from Azcel 1968.

Chapter 6
Our proof of interpolation is adapted from Prawitz 1965. The theorem on interpolation is due to Craig 1957 and Lyndon 1959; on joint consistent Robinson; definability – Beth; completeness – Gödel 1930; countable models – Skolem 1920; double negation – Glivenko 1929, Gödel 1933 and Gentzen 1933.

Chapter 7
Excellent texts on computability and recursive functions are Rogers 1967 and Minsky 1967. The monograph Tarski, Mostowski and Robinson 1968 contains a short proof of representability of recursive functions in a subtheory of Q based on infinitely many axioms, exploiting an inductive definition of recursive function due to Julia Robinson. Shoenfield 1967 proves representability in a finitely axiomatized theory slightly different from Q, using a different inductive definition of recursive function. Hodel and Jeffrey prove representability, using yet another definition, in a finitely axiomatized subtheory of our theory Q.

Our proof of undecidability of first order functional logic is taken from Schwartz 1969. The equational definition of recursive function is due to Herbrand and Gödel (see Kleene 1952). The compressed treatment of self-representing theories with diagonals is taken from Tait 1976.

Results (ii)–(vi) are due respectively to Craig 1953, Janiczak 1950, Vaught 1954, Shoenfield 1970–1 and Tait 1976. The diagonal method originates with Gödel 1931. The order isomorphism in section 5 was first proved by Cantor (1895).
Our proof of decidability of successor arithmetic amplifies a sketch in Smiley 1970. (xii) is due to Tarski 1956.

Our semantics for universally free logic with descriptions is due to Smiley 1970; our introduction and elimination rules for \(\Gamma \) unpack his single axiom.

REFERENCES

Benzmüller, N. D. 'Tonk, plonk and plink' in Strawson 1967.

Benacerraf, P. (1965) 'What numbers could not be' Philosophical Review, 74, 47-73.

Cantor, G. (1895) 'Beiträge zur Begründung der Transfinite Mengenlehre', Mathematische Annalen 96, 481-512.

— (1957) 'Linear reasoning', ibid. 22, 250-68.

— (1973) 'In defense of Convention T' in H. Leblanc (ed.) Truth, Syntax and Modality (Amsterdam) 76-86.

— (1975) 'The philosophical basis of intuitionistic logic', in Rose and Sheperdson 1975.

Frege, G. (1879) Begriffsschrift, tr. in van Heijenoort.

Hintikka, K. J. J. (1962) Knowledge and Belief: An Introduction to the Logic of the Two Notions (Ithaca).

Kleene, S. C. (1952) Introduction to metamathematics (Amsterdam).

— (1960) ‘On what there is’, in From a Logical Point of View (Cambridge, Mass.).

— (1960a) Word and Object (Cambridge, Mass.).

EXERCISES

Chapters 1-4

1. 'The logical form of a sentence is best understood by considering the order in which it is built up from simpler expressions'. Illustrate this with respect to

 (1) Only if it is the case that only if it rains only if it pours does it hail is it the case that it snows.
 (2) Only boys loved only by girls love only girls.
 (3) Only those boys loved only by girls love only girls.
 (4) All boys loved by all girls love all girls.

2. Write down a sentence of first order logic with identity which is true of all and only queues (finite or infinite), using only the predicates P (a person), Bxy (x is behind y) and Cxy (x is a companion of y). You may assume that only companions can occupy the same position in a queue.

 3. No fat person is bald
 John is no fat person
 John is bald

 Is this argument a counterexample to the law of substitutivity of identicals? If not, what is its logical form? Is it valid?

4. Let us call a person hitched to anyone whom he loves and who loves him. Let us call a person confused if and only if he is hitched to more than one person. Let $Lxy = \neg x$ loves y. Assume there are only people. Write down a sentence of first order logic, using only the predicate L and the identity predicate, which says that everyone is confused. If everyone is confused, does everyone love everyone? If everyone loves everyone, is everyone confused? Justify your answers.

5. In the following diagram dots represent individuals and arrows represent relations. Using Axy to mean 'there is a single-headed arrow from x to y' and Bxy to mean 'there is a double-headed arrow from x to y' write down a sentence of first order logic with identity that categorically describes the diagram:

 ![Diagram](image)

 6. As for (5) with the diagram

 ![Diagram](image)

7. Describe counterexamples to the following invalid arguments:

 $\forall x \exists y Rxy \enspace \forall x(\exists y Rxy \supset \exists z Rzx)$

 $\forall x \forall y \exists z (Rxz \land Ryx)$

 $\forall x \exists y Rxy \enspace \forall x(\exists y Rxy \supset \exists z Rzx)$
8. Find both finite and infinite counterexamples to the following invalid argument:

\[\forall x \exists y (Rxy \land Ryz) \]
\[\forall x \forall y (Rxy \rightarrow Ryz) \]
\[\exists x (\forall y Rxy \lor \forall y Ryx) \]

9. Prove, or construct a counterexample to, each of the following arguments:

\[\forall x \exists y (Fxy \rightarrow \neg Fyx) \]
\[\forall x y (Fxy) \]
\[\exists x (\forall y (Fxy \lor \neg Fyx)) \]

10. Prove the following arguments, using only basic deductive rules:

\[A \supset (B \supset C) \]
\[(A \supset B) \supset C \]
\[\neg B \]
\[(A \supset C) \]
\[(B \supset C) \]
\[\neg C \supset A \]

\[\neg D \]
\[A \land B \]
\[\neg (A \supset B) \]
\[A \land B \]

\[\forall x (Ax \supset Cx) \land \forall x (Bx \supset Cx) \]
\[\forall x (Ax \supset Bx) \supset Cx \]
\[\forall x (Ax \supset Bx) \supset Cx \]
\[\exists x (Ax \supset Bx) \supset Cx \]

11. Translate each of the following arguments into logical notation. In each case determine whether it is valid. If so, supply a proof using only basic deductive rules; otherwise, describe a counterexample.

Everything is red or blue
Nothing is red and blue
Not everything is red
Something is blue
John fools only Mary
Anyone fooled by anyone is loved by Fred
Only Mary loves Fred
Only Mary loves Fred and is loved by him

0 and 1 are the only objects
0 is not even
All perfect objects are even
There is at most one perfect object
Alfred is rich or Betty is poor
Betty is rich or Alfred is poor
No-one is rich and poor
Either Alfred and Betty are rich or Alfred and Betty are poor
Someone loves only himself
Anyone who loves himself is loved by no-one else
Someone is loved by no-one else
John loves only himself
No-one else loves only himself
Fred loves himself
John is not Fred
Fred loves someone else
Someone loves someone else
Only people who love only themselves love themselves
Someone does not love himself
Every point is to the left of some point
No point is to the left of itself
There are at least two points
Everyone’s loved by someone
Everyone’s loved ones once loved
Everyone once loved
Someone loves someone else
Anyone loved by anyone else loves himself
Someone loves himself
The cat is on the mat
The mat is round
Nothing is both round and square
The cat is not on anything square

12. If \(f \) and \(u \) are terms, let \((fu) \) be a term. In the case of each of the following arguments, formalize the given informal proof by means of a proof in first order logic with identity:

\[(1) \quad \forall x \; x + 0 = 0 \]
\[(2) \quad \forall x \forall y \forall z \; (xy + xz) = x(y + z) \]
\[(3) \quad \forall x \forall y \forall z \; x + y = x + z \rightarrow y = z \]

\[\forall x \; x0 = 0 \]

Informal proof of (1): Consider arbitrary \(a \). \(a + 0 = a \) from (1). Also \((aa) + (a0) = (a(a + 0)) \) from (2). So, upon substitution, we get \((aa) + (a0) = a(a + 0) \).
But $aa = (aa) + 0$ from (1). Therefore we have $(aa) + (a0) = (aa) + 0$. But then we cancel by (3) to get $(a0) = 0$. But since a was arbitrary this holds for all x.

(11) (1) $\forall x \forall y \forall z ((xy)z) = (x(yz))$
(2) $\forall x (x0) = x$
(3) $\forall x \exists y (x y) = 0$

$\forall x (0x) = x$

Informal proof of (11): By (1) we needn’t worry about order of bracketing. Take an arbitrary object a. By (3) there is some object, b, say, such that $ab = 0$. So $0ab = 00$. But $00 = 0$ by (2). Thus $0ab = 0$ whence $0ab = ab$. By (3) there is some object, say c, such that $bc = 0$. Since $0abc = ab$ we therefore have $0a0 = a0$. Cancelling 0 on both sides by (2), $0a = a$. But a was arbitrary. Thus $\forall x 0x = x$.

13. (1) I am in Edinburgh today
(2) If I am in Timbuktu tomorrow, I shall be in Peking the next day
(3) If I am in Russia the day after tomorrow, I cannot be in Britain today
(4) Edinburgh is in Britain and Peking is in Russia

Given (1)-(4), will I be in Timbuktu tomorrow? Justify your answer by arguing for the appropriate conclusion, citing the immediate premises of each step of inference. Comment on the difficulties involved in providing a strict logical proof of your argument in logical notation. Could these difficulties be overcome?

14. Choose in turn one of the connectives $\&$, \lor and \Rightarrow. Show that the remaining two can be defined in terms of \sim and your choice. Using your definitions, eliminate the defined connectives in the following proof:

$A \& B$
A
$A \lor B (A \lor B) \Rightarrow C$

Which steps in the resulting ‘proof’ are not basic? Re-write it so that only basic rules are used.

15. Prove the following: $(A \Rightarrow B) \lor (B \Rightarrow A)$. Is it true in general that $A \Rightarrow B$ or $B \Rightarrow A$?

16. Consider proofs built up using only the introduction and elimination rules for \Rightarrow, $\&$ and \lor, and the absurdity rule. Call them Proofs. Let $A =_s A \Rightarrow A$. Is A decidable if and only if there is a Proof of $A \lor A$. A is stable if and only if there is a Proof of $(!!A) \Rightarrow A$. Show that every decidable sentence is stable.

17. A two-place connective \times is called idempotent if and only if A is logically equivalent to $A \times A$; and is called associative if and only if $(A \times B) \times C$ is logically equivalent to $A \times (B \times C)$. Investigate the idempotency and associativity, or otherwise, of $\&, \lor, \Rightarrow, =_s, \sim$.

18. The connective \times is governed by the following introduction and elimination rules:

$\frac{A}{B}$

$A \times B \lor B \Rightarrow A \times B$

What is the truth table for \times? Define $\sim, \&$, \lor and \Rightarrow in terms of \times.

19. The one-place connective ψ is governed by the following introduction and elimination rules:

A (with the restriction that A depend only on premises of the form ψB)

How would you interpret ψ? Using these rules and the usual rules of propositional logic prove $\frac{\psi(A \& B)}{\psi A \& \psi B}$.

20. Consider the following definitions:

X and Y are contraries relative to $Z =_s Z, X \Rightarrow Y$

X and Y are subcontraries relative to $Z =_s Z, \sim X \Rightarrow Y$

X and Y are contradictories $=_s X \Rightarrow \sim Y$ and $\sim X \Rightarrow Y$

Consider the following sentences:

- All A's are B's
- No A's are B's
- Some A's are B's
- Some A's are not B's

Which are contraries relative to ‘There are A’s’?

Which are subcontraries relative to ‘There are A’s’?

Which are contradictions?

Translate the sentences into logical notation and prove your answers to these questions, using only basic rules.

Chapters 5-7

21. The least number principle, expressed as a schema, is

$\forall x (\sim \phi x \Rightarrow \exists y (\sim \phi y \& \forall z (z < y \Rightarrow \phi z)))$

The principle of mathematical induction, expressed as a schema, is

$\forall x (\exists y (y < x \Rightarrow \phi y) \Rightarrow \forall z \phi z)$

Prove each from the other, using only basic deductive rules of first order logic.

22. Show that any theorem of classical propositional logic of the form $\neg A$ is a theorem of intuitionistic propositional logic.

23. ψ is highly falsifiable iff for every n there is some $m > n$ such that ψ is false in some model of cardinality m. Show that if ψ is highly falsifiable then
\[\varphi \text{ is false in some infinite model. If } \varphi \text{ is highly falsifiable, does it follow that } \varphi \text{ has no infinite models?} \]

24. Let \(\Delta \) be a set of sentences of a first order language with identity and only finitely many extra-logical expressions. Suppose \(\Delta \) has at least two non-isomorphic finite models. Show \(\Delta \) is incomplete. Give an example of a theory which has infinite models, is categorical in some infinite power, but is incomplete.

25. Let \(\varphi \) be a formula with two free variables built up from variables, the identity predicate and the logical operators. Suppose \(M \) is an infinite model. Show that one of the following holds:

1. for all \(\alpha, \beta \) in \(M \), \(M \models \varphi(\alpha, \beta) \) iff \(\alpha = \beta \)
2. for all \(\alpha, \beta \) in \(M \), \(M \models \varphi(\alpha, \beta) \) iff \(\alpha \neq \beta \)
3. for all \(\alpha, \beta \) in \(M \), \(M \models \varphi(\alpha, \beta) \)
4. for no \(\alpha, \beta \) in \(M \), \(M \models \varphi(\alpha, \beta) \)

26. A formula \(\varphi(x) \) of the language of successor arithmetic defines the set \(P \) of natural numbers if and only if

\[n \in P \text{ iff } \varphi(n) \text{ is true in } \mathbb{N}. \]

Show that \(P \) is thus definable if and only if either \(P \) is finite or \(\mathbb{N} \setminus P \) is finite.

27. Suppose \(\varphi \) and \(\psi \) have the same truth value in every model of \(\Delta \) but are not interderivable relative to \(\Delta \). Show that \(\Delta \) is incomplete. If \(\mathfrak{M} \) is a class of models let \(\text{Th}(\mathfrak{M}) \) be the set of sentences true in every model in \(\mathfrak{M} \). Let \(\text{Mod}(\Delta) \) be the set of models in which every sentence in \(\Delta \) is true. Show that \(\Delta \) is consistent and deductively closed if and only if \(\text{Th} \left(\text{Mod}(\Delta) \right) = \Delta \).

28. Show that any consistent decidable set of sentences is contained in a consistent decidable theory.

29. Let \(\beta \) be a mapping on formulae defined as follows:

\[
\begin{align*}
A^\prime & = \neg A \text{ for } A \text{ atomic} \\
(\neg \varphi)^\prime & = \neg \varphi \\
(\varphi \land \psi)^\prime & = \varphi \land \psi \\
(\exists \alpha \varphi)^\prime & = \exists \alpha \varphi \\
(\forall \alpha \varphi)^\prime & = \forall \alpha \varphi
\end{align*}
\]

where we assume the language contains only the logical operators mentioned. Let \(\Delta \) have the following closure properties:

for no atomic formula \(A \) are both \(A \) and \(\neg A \) in \(\Delta \); if \(\neg \varphi \in \Delta \) then \(\varphi \in \Delta \); if \((\varphi \land \psi) \in \Delta \) then \(\varphi \in \Delta \) and \(\psi \in \Delta \); if \((\varphi \lor \psi) \in \Delta \) then \(\varphi \in \Delta \) or \(\psi \in \Delta \); if \(\exists \alpha \varphi \in \Delta \) then for some name \(\alpha \varphi \in \Delta \); and if \(\forall \alpha \varphi \in \Delta \) then for every name \(\alpha \varphi \in \Delta \).

Show that \(\Delta \) has a model.

GLOSSARY

of frequently used notation

Set theoretical

\[\varphi \models \Delta \] \(\varphi \) is a member of \(\Delta \)

\[\Delta \subseteq \Gamma \] \(\Delta \) is a subset of \(\Gamma \)

\[\Delta \lor \Gamma \] the union of \(\Delta \) and \(\Gamma \)

\[\Delta \cup \{ \varphi \} \] \(\Delta \) union \(\varphi \)

\[\Delta \setminus \Gamma \] the result of removing the members of \(\Gamma \) from \(\Delta \)

\[\langle \alpha_1, \ldots, \alpha_n \rangle \] ordered \(n \)-tuple

\[\emptyset \] empty set

\[\{ \} \] set

\[\omega \] set of finite ordinals

\[\aleph_0 \] first infinite cardinal

Logical

\[* \] absurdity sign, page 40

\[\sim \] negation, 16

\[\land \] conjunction, 16

\[\lor \] disjunction, 16

\[\supset \] material conditional, 16

\[\equiv \] biconditional, 78

\[\mid \] Sheffer stroke, 63

\[\exists \] existential quantifier, 16

\[\forall \] universal quantifier, 16

\[\downarrow \] identity predicate, 32

\[\text{Descriptive operator, 163} \]

\[x, y, z \] variables, 17

Syntactic notions

\[A, B, C \] atoms

\[\varphi, \psi, \theta, \eta, \xi, \zeta \] formulae/sentences

\[\Delta, \Gamma, \Theta, \Psi, \Sigma \] sets of sentences

\[\Pi, \Sigma \] proofs

\[\Delta / \varphi \] argument with set of premisses \(\Delta \) and conclusion \(\varphi \)

\[\Sigma (\varphi) \] (for definition see page 51)

\[\Pi \]

\[\Pi_1, \ldots, \Pi_n \] etc.

[proof schemata]
INDEX

absurdity rule, 47
adequacy condition, 25
adequacy schema, 28-9
analogy, 43, 46, 57, 60, 69
Anderson, 46-7
argument, 2; for theorems of metalogic, 125-9; semantical, 162
Aristotle, 10
arithmetic: successor, 145; second order, 146; successor and additive, 152
assignment: of individuals to variables, 26, 36; of truth values, 89
assumption, 43, 49
atom, 88
atomic closure, 109
atomic knowns, 107
atomic sentence, 16: truth conditions of, 22
axiom of choice, 175
axiomatizable, 141
axioms: Hilbert's for Euclidean geometry, 5; for orderings, 35, 132; for successor arithmetic, 145; for second order successor arithmetic, 146; of Q, 153; of Zermelo-Fraenkel set theory, 173-4
basic recursive functions, 154
Behnak, 46, 47
biconditional, 78
bound variable, 16
bracket plus infix notation, 19
cardinality of a language, 130
categorical analysis, 13
categorical, 32
categorically describable, 32
categoricity (in power), 141
categories of expressions, 12
class, 32
characteristic function, 137
choice, axiom of, 175
Church, 122
Church's Thesis, 136, 138
classical negation rules, 57-8
classification of Sheffer proofs in fully normal form, 117
closed terms, 19
closure: deductive, 104; atomic, 109; universal and existential, 118
coding, 136-7
conservative, 78
compact, 6, 89, 146
compactness corollaries, 131
compactness theorem, 35, 89
complete, 6
completeness, viii, 93, 94, 95, 100, 102-4, 129: constructive proofs of, 101-3; of theories, 141; of successor arithmetic, 146-52
composition, 154
computable function, 136-8
conclusion, 2
conditional proof, 42
connective, 16
data, logical, 2, 6, 28, 72, 89
conservatively extends, 120
consistent, 8, 104, 120
corollaries: to compactness, 131; to representability, 159
counterexample, 2, 30, 33-4, 113
decidability: of propositional logic, 103; of monadic logic, 122-5; of successor arithmetic, 146-52
deductive, 137, 141
deducibility, 59, 107: in propositional logic, 89; in a theory, 153
deduction: natural, viii, 7; justification of, 74
deductive power, 146
denotation, 22, 26
denotation rule, 168
descriptive terms, 163
diagonal (for a theory), 142
diagonal method, 136, 140, 143-4
diagonalization, viii; see diagonal method
dilemma, 48, 94
discharge, 42, 56, 95
discharge stroke, 51, 56
discourse, universe of, 4
disjunctive normal form, 98-9
disjunctive set, 109
disjunctive syllogism, 47
distinctness name, 29, 71
Skolem's paradox, 164
Socrates, 7, 22
sound, 6
soundness, 72, 107, 110
strongly representing, 142
substitution, 64, 79; of terms in proofs, 42, 46, 67, 69
substitutivity of identicals, 11, 77
successor arithmetic, 145-52
surface form, 10
sylogism, 10
symmetry of identity, 77
syntactical, 5
system of proof, 5-6: equational system, 138

Tarski, 25
Tarski's adequacy condition, 25
Tarski's schema, 28
term, 16: closed, 19; inductive definition of, 19; non-denoting, 22, 71;
descriptive, 163; class, 163
theorem, 7, 57: compactness, 35, 89, 129; Löwenheim-Skolem, 35, 130, 131, 141; classical soundness, 72;
normalization, 76, 98, 116; extensionality, 79; truth set, 91;
completeness, weak version, 93; completeness, strong version, 94, 100; inconsistency, 94, 106; DNF, 100; theorem-completeness, 100;
weak completeness, 102; maximalization, 104; satisfiability, 104-5; double negation, 106; intuitionistic soundness, 110, 133; intuitionistic maximalization, 111, 133; intuitionistic satisfiability, 111, 134; interpolation, 116, 118; joint consistency, 120; definability, 120-1; finite satisfiability in monadic languages, 123-5; model existence t-t, 129;
strong completeness for classical first order logic with identity, 129; countable models, 129; double negation, 106, 129-30; Trakhtenbrot's, 131;
undecidability of first order functional logic, 140; t-t on first order theories, 142-3; non-categoricity of arithmetic, 145-6; completeness of successor arithmetic, 152; representability, 153, 156, 159; limitative theorems VII-XVI, 160-3
theory, 7, 8, 141; model theory, 7; proof theory, 7; theory of truth, 28; in L, 120; properties of theories, 141-2; of ordering, 144; of successor arithmetic, 145; of successor and additive arithmetic, 152; Q, 152; theory of descriptions, 165; of sets, 173-5
Trakhtenbrot, 131
transitivity: of proof, 49; of identity, 77
transformations of proofs, 49, 94-6, 116
translation, 4, 27, 34
truth: conditions, 4, 22, 24, 89; tables, 23, 59, 63, 78; theory, 28; logical, 47, 89; set, 91, 93

undecidability, 122, 130, 136, 140, 160
unions, axiom of, 173
universally free logic, 163ff
universals, 22
universe of discourse, 4

validity of arguments, 2
variable, bound, 16
variable binding term forming operators, 164
variants: notational, 66; t-u, 77; with respect to t, 79

well-behaved interpolant, 118
well-formed formula, 12
well-founded relation, 101, 131
winning strategy, 36-7
witness, 126

Zermelo, 165, 173